Практика расчета вероятностей сложных событий

Проведение расчетов вероятностей сложных событий с использованием формулы классического определения вероятности. Применение формулы полной вероятности и формулы Бейеса. Нахождение в задаче числа исходов, благоприятствующих интересующему событию.

Подобные документы

  • Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

    презентация, добавлен 21.09.2017

  • Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.

    курсовая работа, добавлен 11.06.2020

  • Формулы и принципы комбинаторики, применение ее в теории вероятностей для подсчета вероятности случайных событий. Изучение закономерности массовых случайных явлений, правильное понимание статистических закономерностей, проявляющихся в природе и технике.

    контрольная работа, добавлен 24.03.2018

  • Вычисление математической вероятности, нахождение независимых событий по теореме умножения вероятностей. Определение возможной вероятности того, что ни один из трех станков не потребует внимания рабочего, расчет вероятности поломки для каждого станка.

    задача, добавлен 13.10.2014

  • Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

    контрольная работа, добавлен 08.12.2011

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Расчет вероятности события. Понятие элементарных событий, их несовместимость. Использование правила умножения. Поиск вероятности выхода прибора из строя. Теорема о произведении и сложении вероятностей для независимых событий. Расчет количества событий.

    контрольная работа, добавлен 05.11.2016

  • Использование формулы полной вероятности при выборе шаров. Определение благоприятного числа случаев. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Построение закона распределения случайной величины и графиков функций.

    контрольная работа, добавлен 09.10.2014

  • Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.

    контрольная работа, добавлен 24.01.2012

  • Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.

    курсовая работа, добавлен 07.06.2014

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.

    контрольная работа, добавлен 05.11.2016

  • Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.

    учебное пособие, добавлен 29.01.2014

  • Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.

    презентация, добавлен 11.11.2022

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

    курсовая работа, добавлен 19.10.2014

  • Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.

    курс лекций, добавлен 21.12.2011

  • Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

    задача, добавлен 20.11.2015

  • Расчет числа одинарных дуг потоковой последовательности по результатам внедрения зонда. Структура бинарной последовательности. Применение в математике модовой вероятности. Выбор пропорций будущих потоков, на основе анализа длин выпавших событий.

    статья, добавлен 03.03.2018

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат, добавлен 10.11.2014

  • Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

    учебное пособие, добавлен 12.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.