Геометричне моделювання квазіеліпсоїдів з неточковими фокусами, що спираються на задані просторові лінії
Метод складання диференціального рівняння у частинних похідних, розв’язком якого має бути поверхня у просторі, що дозволить визначати відбивальні поверхні з точковими фокусами. Алгоритми розв’язання рівняння з метою визначення квазіеліпса на площині.
Подобные документы
- 26. Розв'язування задачі оптимального керування правою частиною неоднорідного бігармонічного рівняння
Дослідження задачі знаходження оптимальної функції правої частини неоднорідного бігармонічного рівняння, для розв'язування якої використовується один з варіантів градієнтного методу. Розв'язання системи інтегральних рівнянь Фредгольма першого роду.
статья, добавлен 27.09.2016 Розв’язання кубічного алгебраїчного рівняння. Математична заміна підкореневого виразу. Метод Феррарі для рівнянь четвертого степеня. Виділення повного квадрата під радикалами. Розклад нерівностей на множники. Рівняння з кубічними ірраціональностями.
лекция, добавлен 24.01.2014Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012- 30. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 - 31. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017 Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
контрольная работа, добавлен 24.01.2018Показникова та логарифмічна функції, властивості. Поняття та властивості логарифмів. Перетворення логарифмічних виразів. Способи розв’язання логарифмічних і показникових рівнянь та їх систем. Показниково-степеневі рівняння. Вправи для розв’язування.
лекция, добавлен 24.01.2014Систематизація основних типів задач з параметрами. Рівняння, нерівності, їх системи і сукупності, які необхідно вирішити. Розв’язання лінійних, квадратних, ірраціональних та інших рівнянь з параметрами. Нерівності та системи рівнянь з параметрами.
научная работа, добавлен 13.02.2014Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
курс лекций, добавлен 10.04.2012Поняття про лінію та її рівняння, їх різновиди та принципи формування, напрямки дослідження. Умови паралельності та перпендикулярності прямих. Загальні рівняння площини та його дослідження. Види рівнянь прямої у просторі. Кут між прямою і площиною.
лекция, добавлен 08.08.2014Отримання формули Коші для зображення розв'язків лінійного неоднорідного стохастичного диференціального рівняння з інтегралом Скорохода та її застосування. Аналіз застосування формули Коші для лінійних неоднорідних стохастичних диференціальних рівнянь.
статья, добавлен 04.02.2017Опис процесу формування вміння розв'язувати рівняння виду х2=а, розуміння змісту основної тотожності квадратного кореня. Розвиток обчислювальних навичок, розв'язування рівняння х2 =а аналітичним способом. Виховання культури спілкування на уроках.
разработка урока, добавлен 28.09.2018Представлено огляд помилок і труднощів, які виникають у здобувачів повної загальної середньої освіти в процесі оволодіння базовими математичними знаннями і вміннями. Одним з яких є вміння розв’язувати рівняння, і в тому числі логарифмічні рівняння.
статья, добавлен 15.11.2021Асимптотичний метод інтегрування системи з малим параметром при частині похідних з точкою звороту. Властивості розв'язків сингулярно збуреного матричного диференціального рівняння. Системи диференціальних рівнянь з лінійним відхиленням аргументу.
автореферат, добавлен 19.07.2015Аналіз умов моделювання розв’язків загальної крайової задачі для лінійного неоднорідного гіперболічного рівняння другого порядку. Методика формульовання теореми існування розв’язку загальних крайових періодичних задач. Побудова наближених розв’язків.
статья, добавлен 29.07.2016Методика розв'язання квадратного рівняння через дискримінант або за допомогою оберненої теореми Вієта. Алгоритм розрахунку рівняння, використовуючи заміну змінної. Особливості застосування способу функціональної підстановки для спрощення виразів.
контрольная работа, добавлен 26.09.2017Обґрунтування способу зображення окремих елементів електричної мережі у схемі заміщення. Визначення та побудова матриці параметрів режиму і параметрів системи для конкретної електричної мережі. Складання рівнянь електричної мережі та їх розв’язання.
курсовая работа, добавлен 06.02.2012Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Розробка та обґрунтування чисельно–аналітичних методів для розв'язування задач, що моделюють коливання рідини в баках, що здійснюється за допомогою об'єднання методу перетворення Келі з методом тригонометричної колокації для диференціального рівняння.
автореферат, добавлен 04.03.2014Умови розв’язності задач з параметрами для сингулярних інтегральних рівнянь, їх сумісність з обмеженнями. Обґрунтування ітераційного і проекційно-ітеративного методів розрахунку. Оцінка збіжності та похибки, побудованих зручних обчислювальних схем.
автореферат, добавлен 05.01.2014Характеристика підходів до розв’язання рівняння коливань математичного маятника з квадратичним тертям. Дослідження варіанту наближеного розв’язання оберненої задачі ідентифікації коефіцієнта опору середовища. Обчислення амплітуд затухаючих коливань.
статья, добавлен 25.03.2016Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.
презентация, добавлен 21.03.2014Лінійне тригонометричне рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розклад рівняння на множники. Рівність однойменних функцій. Перетворення добутків на суми, сум на добутки. Системи тригонометричних рівнянь. Вправи для розв’язування.
лекция, добавлен 24.01.2014Визначення характеристик резонансних енергетичних зон, поза якими стаціонарне рівняння Шредінгера з квазіперіодичним потенціалом має обмежені розв’язки. Розповсюдженні результатів, одержаних для рівняння, на випадок квазіперіодичної системи Дірака.
автореферат, добавлен 24.07.2014