Движение в пространстве. Параллельный перенос

Понятие параллельного переноса на вектор (сдвиг всей плоскости в направлении данного вектора на его длину). Характеристика параллельного переноса различных фигур. Понятие параллельного переноса в пространстве, его основные свойства (движение и пр.).

Подобные документы

  • Вычисление определителей, матрицы и их свойства. Решение систем линейных уравнений и типовых примеров задания 1 РГР. Векторные и скалярные величины. Разложение вектора по координатным осям. Длина и направление отрезка. Прямая линия на плоскости.

    методичка, добавлен 22.09.2017

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Из истории начертательной геометрии, требования к простейшим изображениям и их построение. Характеристика центрального проецирования как наиболее общего случая получения проекций. Суть параллельного проецирования. Пересечение многогранников плоскостью.

    реферат, добавлен 06.10.2010

  • Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.

    реферат, добавлен 01.03.2009

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

  • Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.

    контрольная работа, добавлен 30.10.2019

  • Скалярные и векторные величины, линейные операции над ними в координатной форме, координатный базис, правило паралеллограма. Скалярное произведение векторов, их разложение по ортам в пространстве. Сонаправленные и противоположные колинеарные вектора.

    методичка, добавлен 01.02.2013

  • Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.

    презентация, добавлен 13.04.2012

  • Сущность метода параллельного аксонометрического проецирования. Основная теорема аксонометрии (теорема Польке). Применение прямоугольных изометрии и диметрии. Построение аксонометрических изображений. Параллельное проецирование окружности на плоскость.

    реферат, добавлен 11.12.2013

  • Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.

    учебное пособие, добавлен 01.04.2013

  • Правила решения задач на построение геометрических фигур в координатной плоскости с применением циркуля и линейки. Алгебраический метод получения отрезка. Формульные выражение для вычисления корней квадратного уравнения. Понятие однородных функций.

    контрольная работа, добавлен 25.01.2015

  • Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.

    контрольная работа, добавлен 26.02.2011

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

  • Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.

    презентация, добавлен 29.04.2015

  • Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.

    презентация, добавлен 28.09.2017

  • Основные числовые характеристики дискретной случайной величины. Свойства математического ожидания. Исследование двумерного дискретного случайного вектора. Частные распределения по компонентам и их характеристики. Ковариационная и корреляционная матрицы.

    курсовая работа, добавлен 28.12.2017

  • Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.

    лекция, добавлен 29.09.2013

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Суть однозначной разрешимости в пространстве ограниченных на всей оси функций для одной системы линейных дифференциальных уравнений с неограниченными коэффициентами. Выявленные условий с помощью связи между "старшими и младшими" коэффициентами системы.

    статья, добавлен 31.08.2020

  • Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.

    шпаргалка, добавлен 11.05.2010

  • Характеристика особенностей построения Декартовой прямоугольной системы координат (на плоскости, в пространстве). Графическое решение систем алгебраических линейных уравнений и задач линейного программирования с помощью Декартовой прямоугольной системы.

    курсовая работа, добавлен 31.01.2015

  • Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.

    учебное пособие, добавлен 13.04.2019

  • Понятие призмы как геометрического тела, ее свойства, сфера применения и способ расчета ее площади. Измерение объемов. Краткий обзор развития геометрии. Симметрия в пространстве. Свойства боковых ребер и поверхностей призмы. Расстояние между плоскостями.

    презентация, добавлен 20.05.2012

  • Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.

    методичка, добавлен 09.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.