Решение уравнений методом хорд

Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.

Подобные документы

  • Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.

    методичка, добавлен 03.03.2012

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Рассмотрение численного решения нелинейного уравнения, описывающего распространения нелинейных волн в двухфазных континуумах. Построение системы линейных алгебраических уравнений и решение данной задачи с использованием метода конечных разностей.

    статья, добавлен 27.09.2012

  • Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.

    дипломная работа, добавлен 14.07.2016

  • Построение деформированных солитонных решений для уравнения КдВ. Определение слабого асимптотического решения деформированного солитона для уравнения КдВ с малой дисперсией. Сравнение уравнений динамики солитонов методами Уизема и слабых асимптотик.

    дипломная работа, добавлен 01.12.2019

  • Определение сущности квадратного уравнения и его видов. Характеристика различных способов решения квадратных уравнений: по формуле, с использованием теоремы Виета и номограммы. Ознакомление с основными свойствами коэффициентов квадратного уравнения.

    контрольная работа, добавлен 17.12.2014

  • Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.

    задача, добавлен 05.09.2016

  • Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.

    контрольная работа, добавлен 11.03.2012

  • Вычисление всех корней нелинейных уравнений, содержащихся на заданном отрезке локализации. Аналитическое и численное решение задач методами бисекции, Ньютона и простых итераций (последовательных повторений). Критерий окончания итерационного процесса.

    лабораторная работа, добавлен 12.12.2011

  • Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.

    лекция, добавлен 01.09.2017

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • Тригонометрические функции числового аргумента. Метод замены переменной, разложения на множители, решения однородных тригонометрических уравнений. Отбор корней. Метод подстановки, введения новой переменной, алгебраического сложения и вычитания уравнений.

    курсовая работа, добавлен 10.05.2020

  • Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.

    учебное пособие, добавлен 26.03.2014

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.

    курсовая работа, добавлен 27.03.2011

  • Методика расчета нелинейных дифференциальных уравнений с частными производными, описывающих физические процессы. Этапы численного решения уравнений данного вида методом конечных разностей. Вычислительный шаблон для границы неправильной конфигурации.

    курсовая работа, добавлен 10.12.2016

  • Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.

    контрольная работа, добавлен 23.12.2017

  • Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.

    контрольная работа, добавлен 18.12.2009

  • Определение и методы решения иррациональных уравнений. Преобразования, при которых уравнение переходит в равносильное уравнение. Решение уравнения возведением обеих его частей в квадрат или введением новой переменной. Использование искусственных приемов.

    реферат, добавлен 06.03.2010

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.

    контрольная работа, добавлен 04.12.2014

  • Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.

    контрольная работа, добавлен 14.06.2015

  • Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.

    лекция, добавлен 14.03.2014

  • Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.

    контрольная работа, добавлен 31.03.2015

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.