Алгебра событий в теории вероятностей
Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.
Подобные документы
Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.
методичка, добавлен 30.01.2016Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.
учебное пособие, добавлен 24.11.2014Исследовано, что в математике название парадокса применяется, когда из кажущихся верными посылок получаются противоречия, что доказывает ложность посылок. Рассмотрено несколько наиболее интересных парадоксов теории вероятностей, приведены примеры.
статья, добавлен 25.02.2019Основные понятия алгебры логики. Операции булевой алгебры. Построение таблиц истинности и булевых выражений. Законы и соотношения булевой алгебры. Преобразование и упрощение булевых выражений методами непосредственных преобразований и карт Карно.
курсовая работа, добавлен 26.06.2014Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.
реферат, добавлен 13.11.2013Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Рассмотрение становления геометрической алгебры в Древней Греции, ее применения при решении уравнений, доказательстве алгебраических тождеств, при построении фигур. Влияние геометрической алгебры на разрешение математических проблем в арабских странах.
статья, добавлен 26.04.2019Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.
доклад, добавлен 17.12.2015Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.
контрольная работа, добавлен 17.03.2015Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012- 111. Дискретная алгебра
Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
курс лекций, добавлен 07.04.2013 Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.
реферат, добавлен 18.03.2014Определение гамма-функции. Интегральное представление, область определения, полюсы. Свойства, непрерывность. Представление Ганкеля через интеграл по петле. Предельная форма Эйлера. Применение гамма-функции в теории вероятностей и математической статистике
курсовая работа, добавлен 08.06.2017Понятия и операции реляционной алгебры. Создание реляционной модели данных. Последовательность шагов для получения результирующего отношения. Операции реляционной алгебры, обеспечивающие выполнение каждого шага. Способ объединения двух отношений.
краткое изложение, добавлен 23.09.2015Получение дополнительной когомологической информации об операциях Адамса в К-теории. Поиск формулы для вычисления коэффициентов Дынкина операций Адамса. Образующие элементы алгебры когомологии однородного пространства. Анализ доказательства теоремы.
статья, добавлен 05.07.2013- 116. Теория вероятностей
Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015 Принципы применения методов теории вероятностей и математической статистики для решения статистических задач. Построение гистограммы относительных частот. Эмпирическая функция распределения случайной величины. Оценка математического ожидания выборки.
контрольная работа, добавлен 16.11.2017Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
контрольная работа, добавлен 17.11.2015Теория массового обслуживания как один из разделов теории вероятностей, ее содержание и сферы практического применения, а также основные цели и задачи. Марковский случайный процесс и его закономерности. Уравнения Колмогорова для вероятностей состояний.
лекция, добавлен 02.04.2019- 120. Линейное уравнение
Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.
контрольная работа, добавлен 29.01.2012 Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019- 122. Пуассоновская модель
Анализ математических моделей случайных явлений, изучаемых в теории вероятностей и математической статистике. Определение смешанных моментов и кумулянт для многомерных случайных величин. Изучение методов распределения пуассоновски остановленных сумм.
дипломная работа, добавлен 21.06.2016 Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.
контрольная работа, добавлен 19.03.2014События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012- 125. Теория вероятностей
Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014