Однокрокові методи розв'язання звичайних диференціальних рівнянь
Чисельне інтегрування звичайних диференційних рівнянь явними і неявними методами Рунге-Кутта. Вплив значення кроку обчислень на точність і збіжність рішення. Визначення можливості застосування засобів стандартних пакетів для отримання результатів.
Подобные документы
Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
автореферат, добавлен 20.07.2015Особливість дослідження асимптотичної поведінки розв’язків диференційних рівнянь дробового порядку. Доведення повноти системи власних та приєднаних функцій крайової задачі із лінійними та нелінійними умовами. Характеристика теореми про базисність Ріса.
автореферат, добавлен 28.12.2015Викладення прикладів застосування диференціальних рівнянь у великій кількості математичних моделей, явищ і процесах у різних галузях науки (біології, фізиці). Розв’язання задач на знаходження кривої, яка проходить через певну точку; швидкості та відстані.
лекция, добавлен 30.04.2014Задачі системи диференціальних рівнянь із запізненням та обмеженнями. Варіанти ітераційного та проекційно-ітеративного методів відшукання наближених розв’язків системи лінійних диференціальних рівнянь із запізненням та обмеженнями, умови оцінки похибки.
автореферат, добавлен 29.07.2014Умови існування періодичних розв’язків диференціальних рівнянь із запізненням. Чисельно-аналітичний метод дослідження періодичних розв’язків інтегро-диференціальних рівнянь другого порядку із запізненням у випадку Т-систем першого і другого класу.
автореферат, добавлен 28.07.2014Асимптотичний метод інтегрування системи з малим параметром при частині похідних з точкою звороту. Властивості розв'язків сингулярно збуреного матричного диференціального рівняння. Системи диференціальних рівнянь з лінійним відхиленням аргументу.
автореферат, добавлен 19.07.2015Визначення поняття логарифмічного рівняння. Основна логарифмічна тотожність. Приклади логарифмічних рівнянь. Властивості логарифмів та найпростіші рівняння. Методи розв’язання рівнянь: за означенням, за властивостями логарифма та графічний метод.
разработка урока, добавлен 13.11.2015Дослідження асимптотики розв'язків систем диференціальних рівнянь, які є лінійним розширенням динамічної системи на торі. Умови існування асимптотично стійких інваріантних тороїдальних множини для лінійних та нелінійних систем диференціальних рівнянь.
автореферат, добавлен 14.08.2015- 34. Чисельні методи
Прямі і ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь. Методи визначення коренів нелінійних рівнянь. Знаходження власних чисел і власних векторів матриць. Кубічна сплайн-інтерполяція, чисельне розв’язування задачі Коші для рівняння.
учебное пособие, добавлен 27.08.2017 Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.
презентация, добавлен 21.03.2014Побудова конструктивних умов існування та алгоритмів знаходження розв’язків нетерових крайових задач для слабконелінійних систем звичайних диференціальних рівнянь. Побудова трьохкрокової ітераційної процедури та отримання умов збіжності цієї процедури.
автореферат, добавлен 17.07.2015Способи вдосконалення методу Ейлера. Розгляд принципу побудови модифікованого методу Ейлера, його суть в обчисленні значень диференціального рівняння (ДР). Значення методу Рунге-Кутта для розв’язання ДР першого порядку, розв’язання задачі Коші для нього.
контрольная работа, добавлен 30.04.2018- 38. Глобальна стійкість різницевих рівнянь та функціонально-диференціальних рівнянь з імпульсною дією
Дослідження глобальної стійкості єдиної нерухомої точки різницевих та функіонально-диференціальних рівнянь з імпульсною дією та з правими частинами, які задовольняють умову Йорка. Розв'язки систем функціонально-диференціальних рівнянь з імпульсною дією.
автореферат, добавлен 26.08.2015 Обґрунтування вимог до критичного та некритичного випадків побудови розв’язків звичайних диференціальних рівнянь. Моделювання алгебраїчної системи лінійних неоднорідних відповідей для крайових задач. Доведення теореми лінійно незалежних розв’язків.
реферат, добавлен 28.10.2016Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.
автореферат, добавлен 04.03.2014Методи розв’язання двоточкових крайових задач до нелінійних диференціальних рівнянь з частинними похідними. Алгоритми знаходження періодичних розв’язків систем нелінійних стаціонарних, нестаціонарних рівнянь. Реалізація просторових задач електродинаміки.
автореферат, добавлен 21.11.2013Розробка нових ефективних методів розв’язання крайових задач для еліптичних систем диференціальних рівнянь з частинними похідними на основі методу р-аналітичних функцій за допомогою їх інтегральних зображень через граничні значення аналітичних функцій.
автореферат, добавлен 23.11.2013Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
статья, добавлен 27.11.2019Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Оцінка ефективності використання диференціальних рівнянь при вирішенні задач математичної ідеалізації процесів і явищ, що досліджуються в небесній механіці. Загальні уявлення про асимптотичні методи розв’язків задач нелінійних інваріантних функцій.
автореферат, добавлен 06.07.2014- 49. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 - 50. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017