Определение объема и площади геометрических фигур. Системы линейных уравнений

Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.

Подобные документы

  • Особенности расчета матрицы и обратной матрицы. Алгоритм математического решения системы линейных уравнений с тремя неизвестными. Построение треугольника, вершины которого находятся в заданных точках. Расчет ребер, площадь грани, объема пирамиды.

    контрольная работа, добавлен 24.10.2019

  • Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.

    статья, добавлен 27.05.2018

  • Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.

    презентация, добавлен 22.11.2015

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

    контрольная работа, добавлен 04.09.2013

  • Решение задачи численным методом с помощью системы линейных уравнений. Перестановка неизвестных в системе уравнений. Столбцы фундаментальной матрицы. Фундаментальная система решений. Определение ранга матрицы. Приведение матрицы к трапециедальному виду.

    контрольная работа, добавлен 02.05.2019

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Определение системы линейных однородных уравнений и ее нетривиальные решения. Доказательство по теореме Крамера. Пример линейной комбинации. Образование базиса подпространства. Понятие фундаментальной системы решений. Линейные неоднородные уравнения.

    лекция, добавлен 26.01.2014

  • Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.

    курсовая работа, добавлен 26.02.2014

  • История возникновения понятий шара и шаровой (сферической) поверхности, их определение как геометрических фигур. Рассмотрение уравнения сферы и основных геометрических формул (площади сферы, объема шара, площади сегмента сферы). Теоремы и доказательства.

    реферат, добавлен 02.04.2012

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.

    контрольная работа, добавлен 18.12.2009

  • Решение системы линейных алгебраических уравнений с тремя неизвестными. Решение системы уравнений методом Крамера. Построение опорного плана транспортной задачи и проверка его оптимальности, построение симплекс-таблицы. Поиск точек экстремума функции.

    контрольная работа, добавлен 05.11.2012

  • Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.

    реферат, добавлен 07.04.2011

  • Решение задачи групповой классификации систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Групповая классификация систем дифференциальных уравнений основных подмоделей уравнений газовой динамики.

    автореферат, добавлен 16.02.2018

  • Коэффициенты квадратичной формы, неоднородная система линейных уравнений методом Гаусса. Собственные значения и собственные векторы линейных операторов. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду, вид этой формы.

    курсовая работа, добавлен 15.03.2011

  • Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.

    задача, добавлен 05.09.2016

  • История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.

    реферат, добавлен 02.11.2015

  • Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.

    задача, добавлен 20.01.2014

  • Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.

    курс лекций, добавлен 30.04.2012

  • Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.

    контрольная работа, добавлен 07.05.2009

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.

    методичка, добавлен 24.03.2015

  • Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.

    контрольная работа, добавлен 13.08.2014

  • Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.

    контрольная работа, добавлен 16.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.