Векторная алгебра

Использование математического аппарата для описания физических процессов. Геометрическая интерпретация векторов. Правило треугольника и параллелограмма. Свойства скалярного и векторного произведения. Преобразование координат при повороте системы отсчёта.

Подобные документы

  • Условие равенства нулю центробежного момента инерции. Площадь как простейшая геометрическая характеристика поперечного сечения. Основные координаты центра тяжести фигуры. Рассмотрение зависимости между моментами инерции при повороте осей треугольника.

    реферат, добавлен 21.09.2017

  • Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.

    контрольная работа, добавлен 24.09.2014

  • Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

    лекция, добавлен 29.09.2013

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.

    контрольная работа, добавлен 17.12.2011

  • Расстояние между точками. Середина отрезка, центр тяжести многоугольника. Задача деления заданного отрезка в любом заданном отношении. Расстояния между точками на окружности. Скалярное произведение векторов. Длина векторного произведения векторов.

    контрольная работа, добавлен 05.12.2018

  • Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 06.09.2017

  • Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.

    контрольная работа, добавлен 01.07.2012

  • Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.

    презентация, добавлен 27.06.2015

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.

    реферат, добавлен 16.05.2016

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Формула Остроградского-Гаусса. Понятие о задачах векторного анализа и теории поля. Определение скалярного поля. Циркуляция векторного поля. Потенциальное векторное поле. Собственные интегралы, зависящие от параметра. Признаки равномерной сходимости.

    курс лекций, добавлен 15.05.2016

  • Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.

    курсовая работа, добавлен 12.02.2013

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Ознакомление со значениями переменных в булевой алгебре. Характеристика математического аппарата описания комбинационных схем. Рассмотрение диаграмм Вейча с различными контурами. Исследование последовательности этапов синтеза комбинационных схем.

    контрольная работа, добавлен 24.04.2017

  • Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.

    лекция, добавлен 29.09.2014

  • Понятие прямоугольного треугольника, его характеристика и отличительные свойства. Теорема о сумме острых углов прямоугольного треугольника. Закрепление знаний учащихся в ходе решения тригонометрических задач по определению длины катетов и гипотенузы.

    презентация, добавлен 30.10.2014

  • Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.

    реферат, добавлен 21.10.2014

  • Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

    презентация, добавлен 23.10.2020

  • Вычисление скалярного, векторного и неопределенного произведения. Вектор антисимметричного тензора. Разложение диадика. Нахождение главных значений и направлений главных осей. Получение кубического уравнения. Система трехлинейных однородных уравнений.

    контрольная работа, добавлен 11.04.2017

  • Проведение исследования линейного пространства с некоторым образом введенной операцией "скалярного произведения". Анализ изучения ортогональных и ортонормированных систем векторов. Характеристика ортогонального дополнения к линейному подпространству.

    практическая работа, добавлен 12.06.2021

  • Метод координат как один из главных способов определения положения точки и тела с помощью чисел или других символов. Базис пространства - любая упорядоченная тройка некомпланарных векторов. Основные условия существования декартовой системы координат.

    контрольная работа, добавлен 24.05.2017

  • Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.

    контрольная работа, добавлен 12.11.2013

  • Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.

    реферат, добавлен 19.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.