Вклады Гаусса в развитие математики

Краткие биографические данные о жизни Фридриха Гаусса. История составления таблицы обратных величин. Первый успех математика, построение правильного 17-угольника циркулем и линейкой. Развитие высшей алгебры, теории чисел, дифференциальной геометрии.

Подобные документы

  • Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.

    дипломная работа, добавлен 06.03.2014

  • Понятие и происхождение слова "Математика". История возникновения математики как науки в Древней Греции. Ее развитие и применение в жизни. Создание счёта и измерения линий, поверхностей и объёмов. Роль и престиж математики в развитии науки и экономики.

    презентация, добавлен 13.01.2016

  • Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.

    презентация, добавлен 14.02.2016

  • Периоды развития математики в Китае. Развитие математики в Китае в рамках условной периодизации, предложенной Ли Янем. Древнее математическое "Десятикнижье": сочинение Лю Хуэя по практической геометрии, метрологический трактат Сунь-цзы, математика Китая.

    реферат, добавлен 05.11.2017

  • Простые элементарные доказательства знаменитых теорем Гаусса, Абеля, Галуа, Кронекера о построение правильных многоугольников и неразрешимости уравнений в радикалах. Рассмотрение основных идей алгебры. Порядок извлечения корней из комплексных чисел.

    статья, добавлен 18.11.2015

  • Первая математическая деятельность: счет и наскальные рисунки. Развитие математики в Вавилоне и Египте. Греческая математика, получение заключений на основе дедуктивного рассуждения. Математики Индии, появление нуля. Математика эпохи Возрождения.

    реферат, добавлен 22.06.2014

  • Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.

    курс лекций, добавлен 19.11.2014

  • Греки классического периода - родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.

    реферат, добавлен 15.10.2011

  • Изучение математики в определениях и терминах. Решение геометрии, механики и теоретической физики с абсолютной точностью. Арифметика рациональных чисел. Дифференциальное исчисление. Обоснование понятий и объектов математики как число, точка, прямая.

    статья, добавлен 26.01.2019

  • История жизни выдающегося советского математика А.Н. Колмогорова - основоположника современной теории вероятностей. Выбор профессии, обучение в университете и пути к вершинам науки. Вклад в развитие математики. Мнения о его трудах других известных ученых.

    реферат, добавлен 04.06.2014

  • Біографічні відомості про К.Ф. Гаусса. Його дитинство та роки навчання. Наукові надбання Гаусса, навчання в Геттінгенському університеті. Створення вченим важливої праці з аналізу нескінчено малих величин. Відкриття вченого в математиці, їх значення.

    реферат, добавлен 16.04.2009

  • Краткие биографические данные о жизни математика Луки Пачоли. Влияние писателя, музыканта и архитектора – Леона Баттиста Альберти, на работы ученого. Публикация "Трактата о счетах и записях". Работа математика над книгой "Божественная пропорция".

    реферат, добавлен 11.09.2016

  • История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.

    контрольная работа, добавлен 16.02.2022

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Древнейшие древнеегипетские математические тексты. Вавилонская расчётная техника. Развитие математики в древнем Китае и Греции. Развитие основных областей математики в XVI-XIX в. Подсчёт определителя по Крамеру. Нормальное и биномиальное распределения.

    реферат, добавлен 20.01.2012

  • Изучение сфер жизни человека, в которых присутствует математика. Связь геометрии с повседневной жизнью человека. "Золотое сечение" в окружающей действительности, его применение в архитектуре и произведениях искусства. История возникновения геометрии.

    презентация, добавлен 14.04.2016

  • Рассмотрение биографии великих ученых и их основных заслуг в области математики. Характеристика достижений и научных открытий Евклида, Пифагора, И. Ньютона, Б. Паскаля, Г. Лейбница, Р. Декарда, Л. Эйлера, Б. Римана, К. Гаусса, А. Тьюринга и Э. Уайлса.

    презентация, добавлен 04.05.2017

  • Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.

    доклад, добавлен 10.02.2014

  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация, добавлен 10.08.2015

  • Биография французского математика, одного из создателей аналитической геометрии и теории чисел, Пьера Ферма. Математика как увлечение. Две знаменитые теоремы из области теории чисел: малая теорема Ферма и "великая" теорема Ферма, их суть и доказательство.

    доклад, добавлен 07.05.2015

  • Биография, вклад в развитие механики, физики, астрономии Л. Эйлера — швейцарского, немецкого и российского математика, автора исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.

    реферат, добавлен 26.03.2019

  • Задача о делении заданного угла на три равные части построением циркулем и линейкой. Особенности трисекции угла, способы её выполнения и ограничения. Варианты деление угла на нечётное количество равных углов. Построение правильного семиугольника.

    статья, добавлен 12.06.2016

  • Влияние К.Ф. Гаусса на Лобачевского во время обучения в университете. Получение степени магистра и избрание на должность ректора. Математические достижения великого ученого. Характеристика трудов и книг Лобачевского в области алгебры и геометрии.

    биография, добавлен 07.05.2011

  • Главная задача численных методов. Система Линейных Алгебраических Уравнений (СЛАУ), их проблематика. Методы решения поставленных задач. Порядок обращения матриц. Число обусловленности, описание метода Гаусса. Обзор программного модуля для Турбо Паскаль.

    курсовая работа, добавлен 21.12.2012

  • Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.

    реферат, добавлен 23.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.