Система массового обслуживания с ожиданием
Особенности системы массового обслуживания. Типы ограничений, наложенных на ожидание. Получение системы бесконечного числа дифференциальных уравнений для системы. Формулы Эрланга для вероятностей состояний системы при установившемся режиме обслуживания.
Подобные документы
Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Представление подводной лодки в виде материальной точки с приложением действующих на нее сил. Выведение системы дифференциальных уравнений и получение траектории движения лодки, заданной параметрически. Численные решения системы и построение графиков.
творческая работа, добавлен 14.02.2011Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Использование матричной системы Matlab и ее приложения Simulink для моделирования динамических систем и устройств, в которых необходимо составлять и решать системы дифференциальных уравнений. Построение структурной схемы контура самонаведения ракеты.
статья, добавлен 27.02.2019Рассмотрение способа нахождения общего вида решения системы рекуррентно связанных дифференциальных уравнений первого порядка с линейной зависимостью в правой части. Особенности использования полученной прямой аналитической зависимости в сложных моделях.
статья, добавлен 18.12.2017Математическое ожидание, дисперсия, среднее квадратичное отклонение. Биноминальный закон распределения. Теория массового обслуживания. Закон больших чисел и теорема Бернулли. Вероятность попадания на малый интервал времени двух или более событий.
лекция, добавлен 29.06.2016Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.
учебное пособие, добавлен 29.01.2014Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
контрольная работа, добавлен 26.02.2012Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.
реферат, добавлен 08.03.2010Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.
контрольная работа, добавлен 24.12.2014Моделирование системы автоматического регулирования с постоянным запаздыванием. Система дифференциальных уравнений для регулирования системы с учетом влияния скорости ветра, мощности потребляемой электроэнергии и времени запаздывания по регулированию.
статья, добавлен 30.01.2013Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.
контрольная работа, добавлен 21.11.2012Характер поведения динамической системы, описываемой нестационарным временным рядом. Метод "фазового портрета". Восстановление в заданном классе системы дифференциальных или разностных уравнений на базе скалярного временного ряда наблюдаемого процесса.
статья, добавлен 30.07.2017Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.
реферат, добавлен 29.11.2015Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Матричная запись линейной системы. Матричный метод решений. Решение системы по правилу Крамера. Формулировка теоремы Кронекера-Капелли, алгоритм решения системы. Метод Гаусса или метод исключения неизвестных, элементарные преобразования над строками.
контрольная работа, добавлен 02.04.2012Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014Роль полиномиальных систем в общей качественной теории автономных систем двух дифференциальных уравнений. Элементарное доказательство теоремы Берлинского А.Н. о числе особых точек второй группы системы. Исследование на ацикличность квадратичной системы.
статья, добавлен 05.07.2013