Метод наименьших квадратов
Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.
Подобные документы
Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Сущность, виды и причины безработицы в России. Построение модели парной регрессии. Определение показателя эластичности. Вычисления критерия Дарбина-Уотсона и индекса Ласпейреса. Исследование остатков с применением предпосылок метода наименьших квадратов.
дипломная работа, добавлен 18.06.2014Оценка коэффициента линейной регрессии по методу наименьших квадратов. Модель кейнсианского типа. Определение эмпирических коэффициентов регрессии и корреляции в случае линейной модели регрессии. Решение системы нормальных уравнений по формулам Крамера.
контрольная работа, добавлен 19.10.2013Рассмотрение модели линейной регрессии. Ознакомление с содержанием стандартного метода наибольшего правдоподобия. Получение трехдиагональной обратной матрицы при помощи гауссового исключения. Получение окончательной несмещенной оценки дисперсии.
реферат, добавлен 26.06.2018Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.
контрольная работа, добавлен 02.02.2014Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.
задача, добавлен 11.06.2013Множественная регрессия как наиболее распространенный метод в эконометрике. Отбор факторов при построении уравнения множественной регрессии. Метод наименьших квадратов, свойства оценок на его основе. Сравнение влияния различных факторов на результат.
лекция, добавлен 25.04.2015Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.
статья, добавлен 04.02.2014Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Сущность и цели экономического анализа, взаимосвязи переменных и поведение различных показателей. Модель парной линейной регрессии. Метод наименьших квадратов, система нормальных уравнений. Примеры реализации линейной регрессии в Microsoft Excel.
учебное пособие, добавлен 06.10.2012Линейные и нелинейные модели парной регрессии и корреляции. Свойства оценок на основе метода наименьших квадратов. Анализ системы эконометрических уравнений. Характеристика структурной и приведенной форм. Суть автокорреляции уровней временного ряда.
лекция, добавлен 10.06.2014Классификация эконометрических моделей. Использование метода наименьших квадратов для нахождения параметров. Описание тренда и интервенции временного ряда. Построение модели стоимости обучения в высшем учебном заведении. Проведение анализа рынка квартир.
контрольная работа, добавлен 17.02.2014Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.
контрольная работа, добавлен 27.06.2012Системы эконометрических уравнений. Суть идентификации - единственности соответствия между приведенной и структурной формой модели. Оценка параметров структурной модели. Косвенный и двухшаговый метод наименьших квадратов. Модель протекционизма Сальвадора.
курсовая работа, добавлен 25.09.2011Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).
лабораторная работа, добавлен 19.02.2016Определение и характеристика сущности парной регрессии и корреляции. Изучение примеров гетероскедастичности. Ознакомление с традиционном методом наименьших квадратов для многомерной регрессии. Рассмотрение критических значений критерия Стьюдента.
курсовая работа, добавлен 26.09.2017Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.
контрольная работа, добавлен 15.05.2017- 43. Особенности экстраполяции. Принципы прогнозирования. Классификация экономического прогнозирования
Экстраполяция - определение недостающего уровня, находящегося в начале или конце ранжированного ряда. Применение метода наименьших квадратов для расчета параметров функциональной зависимости. Основные этапы при прогнозировании экономических явлений.
контрольная работа, добавлен 24.11.2014 Особенности прогнозирования спроса на товары длительного пользования. Метод математического моделирования. Использование метода наименьших квадратов для идентификации параметров системы. Применение моделей кривых роста в экономическом прогрессе.
дипломная работа, добавлен 30.10.2017Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.
контрольная работа, добавлен 26.02.2010Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.
статья, добавлен 13.09.2018Метод наименьших квадратов при оценке параметров линейной модели. Показатели разброса случайной величины, коэффициент детерминации, функция эластичности, гетероскедастичность и автокоррелированность ошибок в Гауссовском распределении и статистике Фишера.
контрольная работа, добавлен 28.07.2011Описание проверки гипотезы относительно параметров регрессионного уравнения. Определение несмешенности, состоятельности и эффективности параметров регрессионного уравнения. Использование гистограммы Колмогрова-Смирнова, проверка гетероскедантичности.
контрольная работа, добавлен 24.06.2016Эконометрика как наука, изучающая количественные закономерности и взаимосвязи в экономике. Методика расчета стандартных ошибок коэффициентов парной линейной регрессии. Эконометрический анализ при нарушении предпосылок метода наименьших квадратов.
учебное пособие, добавлен 04.06.2015Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Трендовая модель экономической динамики. Использование для нахождения параметров модели либо метода наименьших квадратов, либо матричной записи.
контрольная работа, добавлен 13.06.2009