Элементы линейной алгебры

Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.

Подобные документы

  • Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.

    лекция, добавлен 12.03.2013

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.

    контрольная работа, добавлен 21.05.2013

  • Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.

    реферат, добавлен 20.02.2012

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

  • Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.

    курсовая работа, добавлен 21.04.2011

  • Определитель как одно из основных понятий линейной алгебры. Нахождение обратной матрицы. Коэффициенты при переменных и свободные членов. Методы Крамера и Гаусса. Отрезки, отсекаемые плоскостью на осях координат. Исследование функции и построение графика.

    контрольная работа, добавлен 08.10.2014

  • Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.

    реферат, добавлен 23.11.2011

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.

    лекция, добавлен 28.07.2015

  • Равенство матриц, действия над ними. Умножение матрицы на матрицу-столбец. Определения определителей второго и третьего порядков. Понятие обратной матрицы. Решение систем линейных уравнений с неизвестными матричным методом и по формулам Крамера.

    контрольная работа, добавлен 26.09.2017

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2018

  • Понятие и структура матриц, их классификация и типы, подходы к анализу. Типы и свойства операций, производимых над матрицами: сложение, умножение. Понятие определителя матрицы, а также правила его вычисления. Системы линейных алгебраических уравнений.

    лекция, добавлен 12.11.2017

  • Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.

    методичка, добавлен 22.12.2010

  • История возникновения и использования матриц в алгебре. Рассмотрение основных понятий и типов матриц. Основные арифметические операции над матрицами. Свойства умножения матриц на число. Вычисление определителей второго и третьего порядка в матрице.

    контрольная работа, добавлен 15.11.2017

  • Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.

    учебное пособие, добавлен 25.11.2012

  • Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.

    курс лекций, добавлен 30.04.2012

  • Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.

    тест, добавлен 06.09.2017

  • Проведение операции сложения над матрицами одного порядка, операции умножения матрицы на число и операции умножения матриц подходящего порядка. Рассмотрение аксиоматических исходных свойств операций. Характеристика приоритета операций над матрицами.

    реферат, добавлен 09.11.2014

  • Введение в математический анализ. Алгоритм вычисления пределов. Раскрытие неопределенностей. Классификация функций. Непрерывность функции в точке. Дифференциальное исчисление функций одной переменной. Определение и геометрический смысл дифференциала.

    учебное пособие, добавлен 28.08.2017

  • Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.

    контрольная работа, добавлен 02.12.2013

  • Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.

    лекция, добавлен 29.09.2013

  • Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.

    курсовая работа, добавлен 28.06.2012

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Вычисление определителя матрицы классическим способом. Расчет установившихся режимов электрических систем. Нахождение токов методом Крамера. Вычисление узловых напряжений. Методы решения систем линейных алгебраических уравнений. Свойство вероятности.

    курсовая работа, добавлен 15.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.