Непрерывность функций в точке. Основные понятия
Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.
Подобные документы
- 51. Свойства функций
Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.
презентация, добавлен 17.12.2014 Определение предела числовой последовательности. Расчет суммы числового ряда. Частичные суммы и закономерность их вычисления. Исследование ряда на сходимость. Условие непрерывности функции и односторонние пределы. Вычисление производной в любой точке.
контрольная работа, добавлен 24.01.2014Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013- 55. Вложение классов функций, интегрируемых с весом на отрезке и удовлетворяющих условия типа Липшица
Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.
статья, добавлен 30.10.2016 Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.
реферат, добавлен 06.03.2010Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.
методичка, добавлен 08.09.2015Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.
лекция, добавлен 27.04.2017Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.
курсовая работа, добавлен 05.05.2015Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.
курсовая работа, добавлен 16.04.2015Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.
лекция, добавлен 17.12.2014Графики некоторых элементарных функций. Аналитическая геометрия на плоскости. Дифференциальное исчисление функций одной переменной. Понятие о векторах и скалярах. Векторная алгебра. Физические основы механики. Реальные газы, жидкости и твердые тела.
методичка, добавлен 10.02.2013Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.
контрольная работа, добавлен 26.05.2014Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.
лабораторная работа, добавлен 15.05.2020- 66. Число "е"
Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.
лекция, добавлен 29.09.2013 - 67. Числовые ряды
Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.
лекция, добавлен 18.10.2013 Свойства функций, непрерывных на отрезке. Теоремы и их доказательства. Определение производной и ее приложения. Закон равномерного движения, механический смысл производной. Геометрический смысл производной. Непрерывность дифференцируемой функции.
лекция, добавлен 05.03.2009Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.
доклад, добавлен 20.05.2014Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
лекция, добавлен 29.09.2014Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
лекция, добавлен 05.03.2009Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
методичка, добавлен 28.06.2013- 73. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 Характеристика периодических функций Левитана, анализ их основных свойств и квазиравномерная сходимость. Непрерывность функции с пределом, равным нулю на бесконечности. Понятие асимптотически почти автоморфной и периодической функций, их разница.
статья, добавлен 22.03.2016Определение функции, ее свойства. Основные элементарные функции. Предел функции в точке, способы его вычисления. Вычисление предела отношения бесконечно малых функций. Раскрытие неопределенностей. Доказательство первого и второго замечательных пределов.
лекция, добавлен 29.09.2014