Алгебра множеств

Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.

Подобные документы

  • Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

    лекция, добавлен 18.10.2013

  • Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.

    курсовая работа, добавлен 03.10.2016

  • Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.

    учебное пособие, добавлен 13.02.2016

  • Основное правило комбинаторики. Теория булевых функций, булева алгебра характеристических векторов и высказываний. Определение и способ задания булевых функций. Дизъюнктивные и конъюнктивные нормальные формы. Эйлеровы графы, сети, пути в орграфах.

    курс лекций, добавлен 18.03.2010

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.

    статья, добавлен 11.02.2021

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.

    методичка, добавлен 08.09.2015

  • Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.

    реферат, добавлен 15.11.2010

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.

    лекция, добавлен 29.09.2014

  • Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

    статья, добавлен 24.11.2022

  • Алгебра как часть вычислительного анализа и теории функций. Теория конечных групп подстановок. Представители Русской алгебраической школы. Научные исследований по математике Отто Шмидта, гипотеза о происхождении Земли. Труды по теории множеств Новикова.

    реферат, добавлен 14.11.2014

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.

    методичка, добавлен 07.08.2015

  • Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.

    статья, добавлен 29.10.2013

  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа, добавлен 28.09.2011

  • Использование новой математической структуры, которая является обобщением алгебры множеств и совмещает в себе некоторые свойства частично упорядоченных систем и логических исчислений. Особенность моделирования концепции естественных рассуждений.

    статья, добавлен 16.01.2018

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.

    реферат, добавлен 06.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.