Эйлеровы интегралы

Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

Подобные документы

  • Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).

    учебное пособие, добавлен 28.12.2013

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.

    презентация, добавлен 17.09.2013

  • Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.

    реферат, добавлен 20.10.2014

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.

    учебное пособие, добавлен 08.09.2011

  • Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.

    курсовая работа, добавлен 27.11.2018

  • Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.

    контрольная работа, добавлен 23.04.2011

  • Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.

    контрольная работа, добавлен 20.12.2011

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.

    курсовая работа, добавлен 22.04.2011

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

  • Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.

    учебное пособие, добавлен 13.09.2015

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Определенные и несобственные интегралы. Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Признаки сходимости и расходимости. Эталонные интегралы.

    реферат, добавлен 21.08.2008

  • Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.

    реферат, добавлен 02.09.2013

  • Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.

    курс лекций, добавлен 23.10.2013

  • Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.

    контрольная работа, добавлен 14.05.2012

  • Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.

    реферат, добавлен 21.03.2023

  • Использование метода неопределенных коэффициентов для нахождения значений. Решение задачи, приводящей к понятию определенного интеграла. Определенный интеграл как предел интегральной суммы. Рассмотрение способов вычисления определенного интеграла.

    контрольная работа, добавлен 09.04.2018

  • Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.

    реферат, добавлен 21.01.2011

  • Характеристика основных правил вычисления площади поверхности. Определение площади куска касательной плоскости. Порядок расчета поверхностного интеграла II-го рода. Составление уравнения направляющей цилиндра и вычисление площади части поверхности.

    лекция, добавлен 17.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.