Исследование функции одной переменной

Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.

Подобные документы

  • Вертикальные, наклонные и горизонтальные асимптоты графика функции. Использование правила Лопиталя для раскрытия неопределённости. Вычисление правостороннего предела. Решение квадратного уравнения. Исследование графика функции на наличие асимптот.

    лекция, добавлен 09.04.2016

  • Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.

    контрольная работа, добавлен 21.10.2010

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.

    лекция, добавлен 29.09.2013

  • Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.

    контрольная работа, добавлен 20.09.2011

  • Определение и расчет производной функции. Формулы приращения дифференциала. Геометрический и физический смысл производной и дифференциала. Мгновенная скорость точки в момент времени. Использование дифференциала для приближенных вычислений прироста.

    лекция, добавлен 26.01.2014

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Рассмотрение основных правил дифференцирования и осуществление дифференцирования сложной функции. Изучение правила исследования функции на монотонность. Определение точек локальных максимумов и минимумов. Расчет стационарных точек, попадающих в интервал.

    презентация, добавлен 26.07.2015

  • Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.

    реферат, добавлен 13.06.2015

  • Исследование поискового метода минимизации мультимодальной функции одной переменной на основе двухзвенной схемы отбора интервалов первого порядка. Поисковый метод ее минимизации. Сравнительное исследование эффективности методов, их плюсы и минусы.

    контрольная работа, добавлен 27.07.2014

  • Монотонность функции. Исследование стационарных точек. Локальный и глобальный экстремум. Выпуклость и перегибы графика функции. Интерполяция и аппроксимация функций. Интерполяционный полином Лагранжа. Формула Тейлора. Понятие об эмпирических формулах.

    реферат, добавлен 17.01.2011

  • Особенности нахождения наибольшего и наименьшего значения функции нескольких переменных. Понятие и сущность точек экстремума и границы множества. Математическое определение частных производных функции, характеристика ее значения в критических точках.

    презентация, добавлен 17.09.2013

  • Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.

    лекция, добавлен 29.09.2013

  • Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.

    презентация, добавлен 21.09.2013

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.

    контрольная работа, добавлен 07.04.2017

  • Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.

    курсовая работа, добавлен 16.04.2015

  • Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.

    контрольная работа, добавлен 19.05.2015

  • Определение числовой последовательности и ее предела. Свойства сходящихся последовательностей. Предел функции одной переменной. Основные правила вычисления пределов. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификации.

    шпаргалка, добавлен 07.09.2013

  • Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.

    контрольная работа, добавлен 17.02.2011

  • Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.

    учебное пособие, добавлен 28.12.2013

  • Функции алгебры логики одной переменной. Пример равносильных вариантов аналитической записи функции f1(x). Пример технической реализации функции f6(x) на контактах электромагнитных реле. Построение дискретного устройства. Релейно-контактная схема.

    лекция, добавлен 15.11.2017

  • Изучение определенного множества, на примере производной функции имеющей бесконечную правостороннюю и левостороннюю производную. Очерк нахождения функции путем дифференцирования в точке. Характеристика геометрического и физического смысла производной.

    лекция, добавлен 29.09.2013

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Предел последовательности и функции, бесконечно малые и большие величины, а также их сравнение. Дифференциальное и интегральное исчисление функции одной переменной. Геометрические приложения определенного интеграла. Производная и дифференциал функции.

    учебное пособие, добавлен 20.08.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.