Возникновение геометрии

Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Учения о тригонометрических величинах. Греческая наука и ионийская школа натурфилософии.

Подобные документы

  • Математика как наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчета, измерения и описания формы объектов, знакомство с историей возникновения. Анализ роли математики в жизни человека. Особенности точных наук.

    реферат, добавлен 07.12.2021

  • Изучение основ начертательной геометрии в непосредственной связи с основами технического рисунка, правила выполнения схем, элементов строительного и топографического черчения. Использование электронных вычислительных машин для решения графических задач.

    учебное пособие, добавлен 27.09.2013

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Понятие стереометрии (геометрия в пространстве) как раздела геометрии, изучающего положение, форму, размеры и свойства различных пространственных фигур. Анализ возникновения и развития стереометрии, ее применение в практической деятельности человека.

    статья, добавлен 24.02.2019

  • Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.

    статья, добавлен 03.05.2012

  • Проведение исследования науки о пространственных отношениях и формах тел. Характеристика основных периодов развития геометрии. Особенность формирования "Начал" Евклида. Изучение элементарной, аналитической и дифференциальной геометрических теорий.

    презентация, добавлен 19.05.2017

  • Изучение геометрии криволинейных поверхностей как важнейший этап в профессии архитектора. Поверхность как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии. Геометрический анализ известных архитектурных сооружений.

    статья, добавлен 11.08.2018

  • Подробный алгоритм интерактивного построения геометрии модели в пакете ANSYS. Последовательность задания температурных граничных условий с помощью функции координат. Реализация всех этапов, предусмотренных сущностью конечно-элементного моделирования.

    учебное пособие, добавлен 13.09.2015

  • Теорема Пифагора. Основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов в главном труде Евклида "Начала". Постулаты Евклида, теорема Виета. Арифмометр Лейбница, формула Эйлера.

    презентация, добавлен 09.05.2021

  • Начертательная и прикладная геометрия как учебные и научные дисциплины, предмет их изучения. Пример практического использования их распространенных методов и приемов при решении задач конструирования технических поверхностей летательных аппаратов.

    статья, добавлен 06.05.2018

  • Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.

    презентация, добавлен 02.05.2012

  • Характеристика методов создания необходимых и полноценных условий для личностного развития каждого ребенка, формирования активной жизненной позиции. Разработка учебного комплекса проектов по геометрии и методических рекомендаций по их использованию.

    статья, добавлен 06.04.2019

  • Изучение вопроса о разработке задач по теме "Многогранники" в отечественной школе. Анализ наиболее известных учебников по геометрии под редакциями Л.С. Атанасяна и А.В. Погорелова. Исследование практики сдачи Единого Государственного Экзамена в России.

    статья, добавлен 13.11.2014

  • Сущность аксиомы как положения, принимаемого без логического доказательства в силу непосредственной убедительности. Аксиомы геометрии: история и ученые-разработчики. Общепринятый аксиоматический метод в математике и его понятие за пределами математики.

    доклад, добавлен 04.12.2008

  • Характеристика алгебраических методов в геометрии, история возникновения терминов "ордината", "координата", их первооткрыватели. Аналитическая геометрия Ферма и Декарта, их отличительные черты. Исследование оптических овалов на биполярных координатах.

    реферат, добавлен 17.09.2014

  • История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.

    практическая работа, добавлен 29.01.2012

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.

    презентация, добавлен 18.09.2013

  • Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.

    презентация, добавлен 23.10.2013

  • Развитие новых идей и методов в математике. Определения, изложенные в "Началах" Евклида. Аксиома о свойствах прямоугольного треугольника. Критика евклидовского обоснования геометрии. Основоположники неевклидовой геометрии. Идеи Лобачевского и Бояй.

    реферат, добавлен 20.11.2010

  • Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.

    учебное пособие, добавлен 12.05.2014

  • Николай Лобачевский, один из гениальных математиков, краткая биография ученого. Области применения геометрии Лобачевского в науке. Лобачевский - автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.

    реферат, добавлен 07.06.2021

  • Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.

    реферат, добавлен 30.10.2010

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.

    книга, добавлен 25.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.