Применение нейронных сетей для решения задач распознавания речи
Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.
Подобные документы
Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.
статья, добавлен 18.07.2020Разработка интеллектуальных систем, основанных на знаниях нейросетевых и нейрокомпьютерных технологий. Использование нейронных сетей при решении предоставления кредита в современном банке. Создание экспертных систем и организация ассоциативной памяти.
контрольная работа, добавлен 29.11.2015Описание подхода, основанного на элементах статистической теории обучения и вероятностных трактовках взаимозависимости между входами и выходами нейронных сетей по их обучению и тестированию. Задачи распознавания урофлоурограмм заболеваний в урологии.
статья, добавлен 13.01.2017MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016- 106. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.
контрольная работа, добавлен 12.05.2015Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Особенности построения современных систем безопасности с целью контроля территории. Создание иерархических сетей на основе систем видеонаблюдения. Использование методов и средств фрактального кодирования изображения, характеристика их возможностей.
статья, добавлен 08.12.2018Применение искусственного интеллекта в деятельности человека. Разработка алгоритма защиты систем компьютерного зрения. Виды вредоносных атак. Использование гауссовского зашумления в нейронных сетях для обеспечения безопасности распознавания образов.
статья, добавлен 09.05.2022Характеристика и изучение взаимосвязи открытых систем. Основные положения и определения сети ПД и структура ее служб. Анализ методов коммутации и режимов передачи пакетов. Международные стандарты на аппаратные и программные средства компьютерных сетей.
практическая работа, добавлен 29.10.2013Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.
статья, добавлен 06.09.2021Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.
курсовая работа, добавлен 26.06.2011Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Характеристика мультиагентных систем на примере конкретной робототехнической системы. Анализ основных логических вычислений рассмотренной мультиагентной системы, которые выполняются при помощи нейронных сетей. Изучение задачи исследования местности.
статья, добавлен 29.07.2018Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013Проблема создания искусственного интеллекта. Имитационные теории моделирования. Развитие нейронных сетей. Разработка семантических алгоритмов. Технологии самообучающихся нейронных сетей. Социально-этические аспекты создания искусственного интеллекта.
реферат, добавлен 28.06.2011Исследование существующих методов моделирования и автоматического распознавания речи, а также известных методов построения оценок достоверности для систем распознавания речи. Разработка алгоритмов построения оценок достоверности результатов работы систем.
автореферат, добавлен 31.07.2018Рассмотрение проблемы создания органических компьютеров, построенных из живых нейронов, с помощью которых сегодня появляется возможность спроектировать новые поколения вычислительных устройств. Нейронные сети как способ решения сложнейших задач.
статья, добавлен 26.04.2019Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018Метод синтеза полиномиальных нейронных сетей для решения задач прогнозирования нестационарных временных рядов. Характеристика метода с точки зрения численной реализации, усложнения архитектуры нейронной сети и пересчета настроенных синаптических весов.
автореферат, добавлен 30.01.2016Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.
статья, добавлен 17.01.2018