Линейная алгебра и аналитическая геометрия

Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.

Подобные документы

  • Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.

    контрольная работа, добавлен 07.03.2016

  • Основы линейной и векторной алгебры. Пределы и непрерывность. Дифференциальное исчисление функций с одной и несколькими переменными. Зависимость производной от направления. Аналитическая геометрия и комплексные числа. Тригонометрическая форма записи.

    курс лекций, добавлен 09.10.2013

  • Уравнение прямой с направляющим вектором. Математическое описание прямой с нормальным вектором. Уравнение прямой с угловым коэффициентом. Математическое выражение кривых второго порядка. Полярная система координат. Векторная функция скалярного аргумента.

    презентация, добавлен 29.09.2017

  • Вычисление определителя матрицы разложением. Решение системы уравнений методом Гаусса. Нахождение площади грани и длины высоты пирамиды. Свойства скалярного произведения. Каноническое уравнение высоты пирамиды. Уравнение медианы, опущенной из вершины.

    контрольная работа, добавлен 01.06.2017

  • Описание уравнения прямой, проходящей через две точки, общее уравнение плоскости, проходящей через перпендикуляры, опущенные из точки на плоскости. Поиск абсциссы точки пересечения прямой с координатной плоскостью, уравнение касательной к окружности.

    контрольная работа, добавлен 24.09.2018

  • Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.

    лекция, добавлен 12.03.2013

  • Вычисление определителя матрицы классическим способом. Расчет установившихся режимов электрических систем. Нахождение токов методом Крамера. Вычисление узловых напряжений. Методы решения систем линейных алгебраических уравнений. Свойство вероятности.

    курсовая работа, добавлен 15.05.2011

  • Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

    курс лекций, добавлен 20.08.2017

  • Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.

    контрольная работа, добавлен 23.06.2020

  • Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.

    доклад, добавлен 18.09.2013

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.

    контрольная работа, добавлен 25.03.2014

  • Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.

    реферат, добавлен 20.02.2012

  • Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений

    реферат, добавлен 26.02.2010

  • Аналитическая геометрия и линейная алгебра. Декартова прямоугольная и полярная системы координат на плоскости. Математический анализ, дифференциальное исчисление функций одной переменной. Дифференциальные уравнения с частными производными второго порядка.

    учебное пособие, добавлен 06.10.2015

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

  • Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.

    курсовая работа, добавлен 26.02.2014

  • Виды матриц, линейные операции над ними. Умножение квадратных матриц первого и второго порядков. Вычисление обратных матриц второго и третьего порядков. Решение линейных уравнений методами Крамера и Гаусса. Применение матриц в различных областях науки.

    реферат, добавлен 02.12.2014

  • Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.

    курсовая работа, добавлен 28.01.2012

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.

    контрольная работа, добавлен 30.10.2019

  • Исследование основных научных гипотез, раскрывающих математическую сущность декартовой системы координат и вычислений. Рассмотрение методов решения уравнений прямой на плоскости. Формульное выражение объекта при наличии заданной точки или отрезков.

    презентация, добавлен 01.09.2015

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Решение системы линейных алгебраических уравнений (СЛАУ) четырьмя способами: с помощью формул Крамера; обратной матрицы; метода замещения (способом последовательных приближений) и классического метода Гаусса (последовательного исключения переменных).

    задача, добавлен 15.01.2014

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.