Задачи и приёмы суммирования
Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.
Подобные документы
Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Арифметическая прогрессия - ряд чисел, в котором каждое число, начиная со второго, равняется предыдущему, сложенному с одним и тем же постоянным числом. Понятие геометрической прогрессии. Формулы суммы первых членов. Характеристическое свойство.
презентация, добавлен 14.11.2016Теоремы о распределении значений сумм характеров абелевых групп и показательных тригонометрических сумм по "сдвигам" интервалов суммирования. Асимптотические формулы для дробных моментов этих сумм. Оценка скорости сходимости к предельному распределению.
статья, добавлен 14.05.2017Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.
реферат, добавлен 30.10.2010Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.
курсовая работа, добавлен 23.10.2017Понятие арифметической прогрессии. Место арифметической и геометрической прогрессии в нашей жизни. Ученые, которые положили начало изучению прогрессий. Теоретические и практические основы решения задач. Примеры существования прогрессий в нашей жизни.
научная работа, добавлен 26.04.2019Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.
статья, добавлен 17.02.2019Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.
курсовая работа, добавлен 13.03.2013Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
контрольная работа, добавлен 17.09.2009Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.
реферат, добавлен 19.07.2016Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.
реферат, добавлен 12.12.2013Оптимальные эквиваленты произведения сумм - метод отражения максимальной предельной оценки в виде объективного критерия эффективности автоматического контроля адаптивного диапазона. Сущность метода индукции на численных примерах итерационного анализа.
статья, добавлен 15.07.2018Сущность метода Хука-Дживса для определения свойств и параметров функций, его отличие от других методов данного типа. Алгоритм работы и этапы выполнения метода. Решение задачи минимизирования функции без учета ограничений. Модификации метода Хука-Дживса.
реферат, добавлен 25.06.2015Ключевая роль неравенств в курсе математики средней школы. Решение неравенств с использованием свойств функции. Линейные, квадратичные, иррациональные, показательные и логарифмические неравенства. Некоторые лжепреобразования при решении неравенств.
дипломная работа, добавлен 09.11.2017Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Исследование метода доказательства вероятностных неравенств, основанный на использовании рекурсивно определяемых функций. Методика разработки и решения задачи, естественным образом возникающей в связи с вопросом об усилении неравенства Розенталя.
статья, добавлен 31.05.2013Числовые таблицы как предмет рассмотрения, общий метод построения арифметических таблиц. Изучение усеченного треугольника Паскаля и его дешифровки, особенности создания арифметической таблицы. Использования формулы Варинга для получения степенной суммы.
статья, добавлен 10.09.2020Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
шпаргалка, добавлен 01.05.2009Учение об отношении и пропорциональности отрезков в арифметической теории. Понятие гомотетии для трёхмерного пространства. Использование метода подобия при решении геометрических задач. Свойство биссектрисы треугольника. Теорема о четырёх точках трапеции.
курсовая работа, добавлен 27.11.2014Основные тригонометрические тождества: формулы привидения, сложения, двойного и половинного угла, преобразования сумм тригонометрических функций в произведение. Графики и свойства обратных тригонометрических функций. Методы решения уравнений, неравенств.
контрольная работа, добавлен 16.06.2010Моделирование вещественных параметров вычисления формулы золотого сечения, в случаях невозможности применения математической модели, удовлетворяющей описание прикладных задач. Исчисление поправочных коэффициентов в уравнении пропорции двух величин.
статья, добавлен 28.10.2015