Система аксиом и теория формального вывода

Начало аксиоматической теории высказываний: первоначальные понятия, система аксиом, правило вывода. Общая характеристика вывода и его свойства. Теорема о дедукции и следствия из нее, сферы практического применения. Основные производные данного правила.

Подобные документы

  • Связь между понятиями аналитических и гармонических функций. Отличия отличной от постоянной гармонической функции, что не может достигать экстремума во внутренней точке области определения. Граничная теорема единственности теории аналитических функций.

    курсовая работа, добавлен 14.06.2023

  • Динамическая система и обыкновенное дифференциальное уравнение. Теорема существования и единственности обыкновенного дифференциального уравнения. Интегрирование уравнения в полных дифференциалах. Свойства комплексных чисел и основная теорема алгебры.

    практическая работа, добавлен 02.03.2012

  • Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.

    реферат, добавлен 30.06.2011

  • Смысл введения интегральных преобразований. Свойства линейности изображения. Теорема о интегрировании оригинала и изображений. Операционное исчисление и некоторые его приложения. Понятие о свертке функций. Теорема о умножении изображений. Теорема Эфроса.

    реферат, добавлен 18.05.2010

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Множини та операції з ними. Основний принцип комбінаторики, правило множини. Декартів добуток двох множин. Біном Ньютона та біноміальні тотожності. Мала теорема Ферма. Шпернерові сімейства та теорема Шпернера. Перестановки та комбінації з повторенням.

    учебное пособие, добавлен 11.04.2013

  • Подходы, описывающие получение формализованных уравнений избыточных измерений крутизны преобразования без усреднения. Коэффициенты при выходных величинах. Решение задачи пространственно-временного усреднения в структуре комбинаторных уравнений величин.

    статья, добавлен 28.09.2016

  • Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.

    учебное пособие, добавлен 13.09.2015

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Области художественных жанров, в которых работал Мауриц Корнелис Эшер. Связь математики и искусства, свойства и геометрические направления картин Эшера. Описание работ, в которых отображены математические фигуры и приёмы, иллюстрация теорем и аксиом.

    практическая работа, добавлен 21.06.2022

  • Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.

    контрольная работа, добавлен 09.12.2016

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.

    лекция, добавлен 29.09.2014

  • Изучение упорядочивания числа объектов. Исследование независимости критериев по предпочтению и транзитивности. Разбор противоречий с помощью транзитивного квазизамыкания. Анализ использования рациональной логики для вывода отношений между объектами.

    доклад, добавлен 17.01.2018

  • Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.

    контрольная работа, добавлен 24.10.2014

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Интерполяционная задача Эрмита о построении многочлена, принимающего заданные значения функции и ее производных в узловых точках. Упрощение вывода формулы интерполяционного многочлена Эрмита. Интерпретация многочлена в представлениях многочлена Тейлора.

    статья, добавлен 12.05.2018

  • Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

    контрольная работа, добавлен 08.12.2011

  • Предмет и задачи теории игр. Принципы линейного программирования и сферы их практического применения. Приведение матричной игры к задаче линейного программирования. Методы и этапы решения матричных игр условием их положительной и произвольной цены.

    курсовая работа, добавлен 28.05.2014

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Аксиоматика и основные понятия стереометрии и ее роль в развитии пространственных представлений. Параллельность двух плоскостей: определение, признак, свойства, теорема. Перпендикулярность прямой и плоскости: определение, основные признаки и свойства.

    реферат, добавлен 25.11.2012

  • Угол: обозначение, единицы измерения. Основные виды углов. Сущность понятия "смежные углы", свойства, теорема. Вертикальные углы, особенности построения. Биссектриса и луч. Образец оформления решения задачи. Пример обучающей самостоятельной работы.

    конспект урока, добавлен 16.09.2013

  • Разработка и анализ структуры новой математической модели представления продукционных баз знаний. Обоснование алгоритмов проведения логического вывода и проверки баз на полноту и избыточность. Оценка корректности и эффективности разработанных алгоритмов.

    автореферат, добавлен 13.04.2018

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.