Особенности интерполирования сплайнами

Преимущества интерполяции сплайнами в сходимости и устойчивости вычислительного процесса. Способы построения кубического сплайна с естественными граничными условиями, завершающегося параболой. Исследование зависимости погрешности от числа узлов сплайнов.

Подобные документы

  • Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.

    презентация, добавлен 21.09.2013

  • Означення ермітових сплайнів з нелінійними за параметрами виразами в ланках. Виведення формул для параметрів ермітових сплайнів з експоненціальними та кубічними ланками. Алгоритм рівномірного наближення функцій з заданою похибкою, методи її розрахунку.

    курсовая работа, добавлен 23.01.2011

  • Описание применения простого метода оценки ошибки интерполяции. Исследование свойства интерполированного сигнала. Пример данных, недостаточно описывающих сигнал. Использование и сущность метода оценки ошибки интерполяции для выбора метода интерполяции.

    статья, добавлен 07.11.2018

  • Задачи управления с дискретным временем, исследуемые методом динамического программирования. Метод Беллмана в моделях оптимального управления и транспортного процесса. Численный алгоритм решения уравнения, нахождение оптимальной стратегии управления.

    дипломная работа, добавлен 15.09.2018

  • Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.

    контрольная работа, добавлен 23.04.2011

  • Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.

    учебное пособие, добавлен 25.01.2019

  • Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.

    дипломная работа, добавлен 04.07.2018

  • Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.

    лабораторная работа, добавлен 27.04.2011

  • Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.

    контрольная работа, добавлен 03.06.2015

  • Изучение поведения плотностей перколяции и джамминга для образцов изотропной случайно последовательной адсорбции при помощи моделирования. Большие линейные k-меры на квадратной решетке с периодическими граничными условиями. Алгоритм симуляции процесса.

    дипломная работа, добавлен 23.09.2018

  • Метрология как отрасль науки, изучающая измерения. Характеристика разновидностей методов сравнения с мерой. Сущность понятия грубой погрешности (промаха). Порядок построения вариационного ряда. Процесс построения графика статистического распределения.

    контрольная работа, добавлен 18.12.2012

  • Определение сплайнов и их пространство. Единичная функция Хевисайда. Базисные, нормализованные и кубические сплайны. Значение метода коллокации. Линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 20.01.2013

  • Определение наибольшего и наименьшего значения функции. Расчет площади криволинейной трапеции, объёма тела вращения. Приложение рядов к приближённым вычислениям. Абсолютная и относительная погрешности. Комплексные числа в расчёте физических величин.

    практическая работа, добавлен 29.11.2014

  • Нахождение погрешности на примере арифметических операций и вычисления значений функции. Постановка задачи и применение интерполирования путем разбора интерполяционной схемы Эйткена, интерполяционной формулы Гаусса, многочлена Лагранжа, Ньютона и Эрмита.

    учебное пособие, добавлен 14.01.2014

  • Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.

    курсовая работа, добавлен 04.02.2012

  • Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.

    статья, добавлен 16.09.2018

  • Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.

    курсовая работа, добавлен 01.10.2012

  • Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.

    курс лекций, добавлен 08.02.2015

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.

    контрольная работа, добавлен 03.06.2009

  • Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.

    статья, добавлен 25.08.2016

  • Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.

    контрольная работа, добавлен 18.03.2014

  • Характеристика классической задачи разложения целого числа в произведение его простых делителей. Исследование экспоненциального роста размерности пространства состояний с ростом числа квантовых частиц. Преимущества использования квантовых компьютеров.

    статья, добавлен 21.06.2018

  • Определение сходящегося и расходящегося ряда, его суммы. Рассмотрение основных различий между необходимым и достаточным признаком сходимости. Особенности остаточного члена формулы Тейлора. Арифметические действия, которые можно производить с рядами.

    контрольная работа, добавлен 11.01.2014

  • Понятие бесконечных сумм, история их исследования с древних времен до сегодня. Определение числового ряда и сходимости. Основные свойства числовых рядов. Достаточные условия сходимости числового ряда: признак сравнения, Даламбера, интегральный Коши.

    контрольная работа, добавлен 24.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.