Особенности интерполирования сплайнами
Преимущества интерполяции сплайнами в сходимости и устойчивости вычислительного процесса. Способы построения кубического сплайна с естественными граничными условиями, завершающегося параболой. Исследование зависимости погрешности от числа узлов сплайнов.
Подобные документы
Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.
презентация, добавлен 21.09.2013Означення ермітових сплайнів з нелінійними за параметрами виразами в ланках. Виведення формул для параметрів ермітових сплайнів з експоненціальними та кубічними ланками. Алгоритм рівномірного наближення функцій з заданою похибкою, методи її розрахунку.
курсовая работа, добавлен 23.01.2011Описание применения простого метода оценки ошибки интерполяции. Исследование свойства интерполированного сигнала. Пример данных, недостаточно описывающих сигнал. Использование и сущность метода оценки ошибки интерполяции для выбора метода интерполяции.
статья, добавлен 07.11.2018Задачи управления с дискретным временем, исследуемые методом динамического программирования. Метод Беллмана в моделях оптимального управления и транспортного процесса. Численный алгоритм решения уравнения, нахождение оптимальной стратегии управления.
дипломная работа, добавлен 15.09.2018Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.
контрольная работа, добавлен 23.04.2011Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.
учебное пособие, добавлен 25.01.2019Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.
дипломная работа, добавлен 04.07.2018Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.
контрольная работа, добавлен 03.06.2015- 35. Анализ перколяционных образцов случайной последовательной адсорбции k-меров на квадратной решетке
Изучение поведения плотностей перколяции и джамминга для образцов изотропной случайно последовательной адсорбции при помощи моделирования. Большие линейные k-меры на квадратной решетке с периодическими граничными условиями. Алгоритм симуляции процесса.
дипломная работа, добавлен 23.09.2018 Метрология как отрасль науки, изучающая измерения. Характеристика разновидностей методов сравнения с мерой. Сущность понятия грубой погрешности (промаха). Порядок построения вариационного ряда. Процесс построения графика статистического распределения.
контрольная работа, добавлен 18.12.2012Определение сплайнов и их пространство. Единичная функция Хевисайда. Базисные, нормализованные и кубические сплайны. Значение метода коллокации. Линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 20.01.2013Определение наибольшего и наименьшего значения функции. Расчет площади криволинейной трапеции, объёма тела вращения. Приложение рядов к приближённым вычислениям. Абсолютная и относительная погрешности. Комплексные числа в расчёте физических величин.
практическая работа, добавлен 29.11.2014Нахождение погрешности на примере арифметических операций и вычисления значений функции. Постановка задачи и применение интерполирования путем разбора интерполяционной схемы Эйткена, интерполяционной формулы Гаусса, многочлена Лагранжа, Ньютона и Эрмита.
учебное пособие, добавлен 14.01.2014Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.
курсовая работа, добавлен 04.02.2012Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.
статья, добавлен 16.09.2018Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.
курс лекций, добавлен 08.02.2015Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.
курсовая работа, добавлен 09.03.2012Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.
статья, добавлен 25.08.2016- 47. Сходимость рядов
Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.
контрольная работа, добавлен 18.03.2014 Характеристика классической задачи разложения целого числа в произведение его простых делителей. Исследование экспоненциального роста размерности пространства состояний с ростом числа квантовых частиц. Преимущества использования квантовых компьютеров.
статья, добавлен 21.06.2018Определение сходящегося и расходящегося ряда, его суммы. Рассмотрение основных различий между необходимым и достаточным признаком сходимости. Особенности остаточного члена формулы Тейлора. Арифметические действия, которые можно производить с рядами.
контрольная работа, добавлен 11.01.2014Понятие бесконечных сумм, история их исследования с древних времен до сегодня. Определение числового ряда и сходимости. Основные свойства числовых рядов. Достаточные условия сходимости числового ряда: признак сравнения, Даламбера, интегральный Коши.
контрольная работа, добавлен 24.06.2011