Методы численного интегрирования
Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.
Подобные документы
Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
статья, добавлен 13.12.2013Математическое моделирование - причина повышения значения вычислительного эксперимента в теоретических и прикладных науках. Наличие графических зависимостей как метод решения проблемы интегрирования численной информации, полученной в эксперименте.
статья, добавлен 25.08.2020Определение двойного интеграла и его свойства. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат. Определение прямоугольной и произвольной областей интегрирования.
лекция, добавлен 28.03.2020Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.
методичка, добавлен 27.08.2017Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.
реферат, добавлен 05.05.2016Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.
статья, добавлен 20.10.2013Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Особенности решения задачи нахождения интеграла от функции, которая является иррациональной. Методы выполнения подстановок, которые позволяют привести подынтегральное выражение к рациональному виду, более удобному для интегрирования тех или иных функций.
презентация, добавлен 18.09.2013Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
диссертация, добавлен 19.06.2015Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
презентация, добавлен 18.09.2013Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.
курс лекций, добавлен 03.07.2013Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.
контрольная работа, добавлен 26.07.2009Ю.А. Виноградов - автор метода преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки. Методика расчета оболочек вращения, где каждый участок может выражаться своими дифференциальными уравнениями.
статья, добавлен 26.06.2016Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.
методичка, добавлен 22.03.2014Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.
контрольная работа, добавлен 08.11.2015Характеристика основных различий между номинальными и реальными уровнями значимости на примере непараметрических критериев проверки однородности двух независимых выборок. Проведение исследования мощности статистических критериев методом Монте-Карло.
статья, добавлен 22.05.2017Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.
курсовая работа, добавлен 20.02.2019Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.
методичка, добавлен 28.10.2015Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017- 100. Теория вероятности
Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.
контрольная работа, добавлен 24.01.2012