Принципы и периоды развития геометрии
Проведение исследования науки о пространственных отношениях и формах тел. Характеристика основных периодов развития геометрии. Особенность формирования "Начал" Евклида. Изучение элементарной, аналитической и дифференциальной геометрических теорий.
Подобные документы
Характеристика отношения параллельности на плоскости Лобачевского. Анализ положений неевклидовой геометрии. Примеры видоизменения теорем, основанных на аксиоме параллельности. Анализ сущности параллельных и непараллельных линий в геометрии Лобачевского.
презентация, добавлен 16.01.2017Значение арифметики как науки. Изучение действий над целыми и дробными числами, методов решения задач, сводящихся к сложению, вычитанию, умножению и делению. История развития арифметических знаний. Теории великих математиков: Пифагора, Архимеда, Евклида.
реферат, добавлен 10.01.2014Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.
учебное пособие, добавлен 13.03.2011История аксиоматического метода построения научных теорий, его использование при создании неевклидовых геометрий. Особенности эллиптической геометрии Римана. Новый взгляд ученых Н.И. Лобачевского, К.Ф. Гаусса, Я. Бойяи на геометрию; оценка открытия.
статья, добавлен 26.04.2019- 106. Аксиомы стереометрии
Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012 Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.
контрольная работа, добавлен 15.06.2011Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".
презентация, добавлен 17.11.2015Определения двумерной нечеткой проективной геометрии. Определение параметров и функции принадлежности двумерной нечеткой точки. Применение нечеткой проективной геометрии и статистической обработки результатов опытов при учете неравноточности измерений.
статья, добавлен 03.02.2017Знакомств с краткой биографией Р. Декарта. Особенности создания аналитической геометрии. Рассмотрение методов решения алгебраических уравнений. Анализ доказательства существования Бога от Р. Декарта. Общая характеристика книги "Рассуждение о методе".
курсовая работа, добавлен 03.05.2021Понятие "кейса" как комплекса разнообразных учебных материалов. Особенности и главные составляющие мультимедиаподхода. Основные преимущества электронных учебников и пособий при изучении геометрии. Описание методов изучения поверхностей второго порядка.
статья, добавлен 29.07.2013Изучение методов изображения пространственных форм на плоскости. Проецирование прямой линии. Определение натуральной величины прямой. Главные линии плоскости. Кривые линии и поверхности. Аксонометрические проекции. Решение метрических и позиционных задач.
учебное пособие, добавлен 27.05.2014Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.
разработка урока, добавлен 20.12.2010Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.
курсовая работа, добавлен 11.02.2010Биография, вклад в развитие механики, физики, астрономии Л. Эйлера — швейцарского, немецкого и российского математика, автора исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
реферат, добавлен 26.03.2019Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
реферат, добавлен 01.10.2014Знакомство с основными особенностями теоремы Чевы и Менелая. Рассмотрение способов и методов решения решения геометрических задач. Общая характеристика примеров применения прямой, а также обратной теорем Чевы. Анализ задач для самостоятельного решения.
контрольная работа, добавлен 26.02.2020Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.
контрольная работа, добавлен 25.03.2011- 119. Элементарные функции
Проведение исследования области определения и области значений элементарной функции. Особенность нахождения ограниченной и неограниченной функции. Основные свойства степенной, квадратичной и логарифмической функции. Характеристика квадратного корня.
реферат, добавлен 26.12.2021 Н.И. Лобачевский и его геометрия. Пятый постулат Евклида. Теорема о существовании параллельных прямых. Взаимное расположение двух прямых на плоскости Лобачевского. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника.
курсовая работа, добавлен 31.10.2017- 121. Призма
Свойства и виды призм. Основания, боковые грани и ребра. О развитии геометрии в Древней Греции до Евклида. Элементы призмы. Свойства правильной четырехугольной призмы. Формулы для правильной четырехугольной призмы. Призма в оптике. Измерение объемов.
контрольная работа, добавлен 21.09.2016 - 122. Векторный анализ
Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.
лекция, добавлен 18.10.2013 Переход от практической к философской геометрии, получение новых геометрических свойств. Определение и элементы многогранников (грань, вершина, ребро). Примеры и вид выпуклых и невыпуклых многограннииков. Многогранники в природе, архитектуре и искусстве.
презентация, добавлен 02.04.2012- 124. Риманова геометрия
Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
реферат, добавлен 16.12.2017 Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
реферат, добавлен 12.09.2010