Матричный анализ

Вычисление элементов матрицы суммы. Определитель третьего порядка и правило треугольников. Решение системы линейных уравнений методом Гаусса. Косинус угла между векторами. Уравнение плоскости, проходящей через точку. Объем тетраэдра с заданными вершинами.

Подобные документы

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.

    реферат, добавлен 23.11.2011

  • Решение задачи численным методом с помощью системы линейных уравнений. Перестановка неизвестных в системе уравнений. Столбцы фундаментальной матрицы. Фундаментальная система решений. Определение ранга матрицы. Приведение матрицы к трапециедальному виду.

    контрольная работа, добавлен 02.05.2019

  • Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.

    курсовая работа, добавлен 26.07.2012

  • Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.

    лекция, добавлен 09.07.2015

  • Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений

    реферат, добавлен 26.02.2010

  • Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.

    доклад, добавлен 18.09.2013

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

  • Задача Коши для дифференциального уравнения первого порядка. Геометрический смысл - нахождение интегральной кривой, проходящей через заданную точку. Общее и частное решение. Дифференциальные уравнения первого порядка, разрешенные относительно производных.

    курсовая работа, добавлен 10.04.2011

  • Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.

    контрольная работа, добавлен 23.04.2022

  • Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.

    конспект урока, добавлен 07.04.2014

  • Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.

    контрольная работа, добавлен 16.11.2011

  • Теорема о существовании и единственности обратной матрицы. Операция обращения матрицы, ее свойства. Вычисление обратной матрицы с помощью алгебраических дополнений или методом Гаусса (используя преобразования Жордана). Решение матричных уравнений.

    лекция, добавлен 11.12.2014

  • Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.

    контрольная работа, добавлен 22.08.2014

  • Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.

    контрольная работа, добавлен 03.07.2012

  • Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.

    контрольная работа, добавлен 15.11.2013

  • Матричная запись линейной системы. Матричный метод решений. Решение системы по правилу Крамера. Формулировка теоремы Кронекера-Капелли, алгоритм решения системы. Метод Гаусса или метод исключения неизвестных, элементарные преобразования над строками.

    контрольная работа, добавлен 02.04.2012

  • Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.

    курсовая работа, добавлен 28.01.2012

  • Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.

    контрольная работа, добавлен 09.04.2012

  • Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.

    лекция, добавлен 18.03.2015

  • Совокупность всех прямых, проходящих через некоторую точку плоскости. Уравнение прямой проходящей через две фиксированные точки. Текущая точка с переменными координатами. Взаимное расположение на плоскости. Критерий перпендикулярности прямых в уравнении.

    презентация, добавлен 01.09.2015

  • Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.

    контрольная работа, добавлен 25.03.2014

  • Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.

    контрольная работа, добавлен 14.06.2015

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.