Система расчета равновесного состояния упругой среды, ослабленной плоской симметричной трещиной
Решение интегро-дифференциального уравнения задачи о плоской трещине нормального разрыва в упругом пространстве. Построение рекуррентного процесса для определения последовательных приближений функции Гельдера. Использование формулы Адамара и Лагранжа.
Подобные документы
Получение условий разрешимости краевой задачи для функционально-дифференциального уравнения третьего порядка в случае резонанса. Ядро и образ оператора. Относительный коэффициент сюръективности оператора. Пространство абсолютно непрерывных функций.
статья, добавлен 26.04.2019Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.
реферат, добавлен 22.11.2018Анализ геометрических задач, приводящих к дифференциальным уравнениям: задача о нахождении кривой наискорейшего спуска и задача о криволинейной трапеции с наибольшей площадью. Решение дифференциального уравнения, описывающее эволюцию некоторого процесса.
статья, добавлен 25.01.2021Математическое моделирование формоизменения материала в ходе испытания на сжатие с плоской деформацией. Разработка алгоритмов построения матрицы жесткости для вычислений с помощью метода конечных элементов, их реализация в форме программных компонент.
дипломная работа, добавлен 02.09.2018Определение корней квадратного уравнения аналитическим способом. Построение графика разрешающей функции в окрестности наибольшего из корней, а также численное определение наибольшего корня с использованием простейшей итерационной формулы первого вида.
методичка, добавлен 12.10.2013Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).
статья, добавлен 21.06.2018Уравнения равносторонней и сопряженной гиперболы. Понятия эксцентриситета, директрисы эллипса и гиперболы. Формулы фокальных радиусов. Фокус параболы, ее функция и построение кривой. Теоремы и доказательства. Упрощение общего уравнения второй степени.
лекция, добавлен 29.09.2013Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.
контрольная работа, добавлен 18.02.2016Решение методом Рунге-Кутты четвертого порядка точности дифференциального уравнения. Характерситика функции распределения и плотности вероятности стандартной величины. Фрагмент сгенерированной стандартной величины. Особенности Винеровского процесса.
лабораторная работа, добавлен 20.05.2021Нахождение корней трансцендентных и нелинейных уравнений комбинированным методом, методами хорд и касательных. Формулы для уточнения корня уравнения. Построение графика функции, графиков первой и второй производной. Графический метод отделения корней.
лабораторная работа, добавлен 07.12.2012Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Особенность определения годографа вектора-функции. Характеристика нахождения выражения дифференциала дуги. Вычисление кривизны линии, заданной параметрически и уравнением в полярных координатах. Изучение эвольвентного зацепления математиком Л. Эилером.
лекция, добавлен 28.01.2016Задача Коши для дифференциального уравнения первого порядка. Геометрический смысл - нахождение интегральной кривой, проходящей через заданную точку. Общее и частное решение. Дифференциальные уравнения первого порядка, разрешенные относительно производных.
курсовая работа, добавлен 10.04.2011Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.
шпаргалка, добавлен 04.04.2015Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
методичка, добавлен 22.10.2014- 91. Матрицы Адамара
Характеристика матриц Адамара и некоторые их обобщения. Процесс вычисления наибольшего возможного числа положительных слагаемых при раскрытии определителя. Определение основных методов построения вещественных матриц Адамара, их специфика и применение.
статья, добавлен 26.05.2017 Построение канонической формы задачи линейного программирования и ее графическое решение. Построение допустимой области. Решение задачи в специальной форме симплекс-методом, методом искусственного базиса. Построение и решение пары двойственных задач.
контрольная работа, добавлен 14.02.2013Определение зависимости между перемещениями и деформациями, сущность уравнения Коши и его использование. Условия совместности (неразрывности) деформаций. Рассмотрение дифференциального уравнения равновесия. Расчет напряжения на наклонных площадках.
курсовая работа, добавлен 19.09.2017Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015- 97. Построение математической модели процесса охлаждения потока движущей среды в пространстве состояний
Применение спектральной теории для построения математической модели процесса охлаждения потока движущейся среды в пространстве состояний. Сравнение переходного процесса модели с переходным процессом эталонной модели, полученной операторным методом.
статья, добавлен 28.01.2020 Решение задачи симплекс-методом. Составление экономико-математической модели задачи. Определение вероятности выхода из строя узла. Вычисление общего интеграла дифференциального уравнения первого порядка. Определение области сходимости степенного ряда.
контрольная работа, добавлен 09.06.2012- 99. Интерполяция
Интерполяционная формула Лагранжа. Определение производных функции. Оценка остаточного члена. Исчисление корня уравнения с помощью обратного интерполирования. Построение интерполяционного многочлена Ньютона. Сущность вычислительных методов алгебры.
контрольная работа, добавлен 23.04.2011 Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015