Вычисление криволинейных интегралов 1 рода
Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
Подобные документы
Наибольшее и наименьшее значение функции. Поиск неопределенных интегралов, проверка правильности результата с помощью дифференцирования. Изменение порядка интегрирования в двойном интеграле. Решение системы дифференциальных уравнений операционным методом.
контрольная работа, добавлен 19.03.2012Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 21.09.2013Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.
презентация, добавлен 18.09.2013Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.
контрольная работа, добавлен 16.11.2014Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.
контрольная работа, добавлен 25.04.2017- 107. Метод Монте-Карло
Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010 Геометрический смысл двумерной интегральной суммы. Сущность непрерывного, кусочно-непрерывного и монотонного интегралов. Назначение процедуры повторного интегрирования. Свойства одномерных сумм Дарбу. Необходимое и достаточное условие интегрируемости.
реферат, добавлен 17.01.2011Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.
эссе, добавлен 30.06.2016Знакомство с методами вычисления определителей третьего порядка. Рассмотрение особенностей решения системы линейных уравнений методом Гаусса. Характеристика основных способов нахождения косинуса угла между векторами. Этапы вычисления объема тетраэдра.
контрольная работа, добавлен 04.05.2013- 111. Векторный анализ
Криволинейные интегралы 1 и 2-го рода: механический смысл, свойства, формулы вычисления. Общий вид уравнения прямой, проходящей через две произвольные точки. Определение координат центра тяжести дуги циклоиды. Формула Грина и объяснение ее смысла.
лекция, добавлен 21.11.2013 Характеристика предела интегральной суммы функции, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю. Рассмотрение алгоритма вычисления определённого интеграла. Последствия замены переменной в интеграле.
задача, добавлен 22.04.2015Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.
курсовая работа, добавлен 09.10.2014Решение вариационной задачи теории мультипликативного интеграла. Исследование вариаций на экстремум функционала. Кривизна криволинейного мультипликативного интеграла как линейная функция относительно переменных. Теория мультипликативного интеграла.
статья, добавлен 31.05.2013Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
реферат, добавлен 21.03.2023Понятие криволинейных координат точки. Контравариантные и ковариантные компоненты вектора. Ортогональные криволинейные параметры и условия их ортогональности. Определение выражения для скорости и ускорения точки в цилиндрической системе координат.
учебное пособие, добавлен 28.12.2013Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.
реферат, добавлен 12.11.2010Пределы интегрирования в двойном интеграле по данной области. Вычисление двойного интеграла в прямоугольной и полярной системах координат. Вычисление криволинейного интеграла по формуле Грина. Исследование заданных рядов про признакам Даламбера и Коши.
методичка, добавлен 10.11.2014Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.
презентация, добавлен 25.09.2017Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.
лекция, добавлен 29.09.2014Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.
курсовая работа, добавлен 16.09.2013Особенности вычисления предела функции, когда оба аргумента стремятся к нулю. Сущность решения задачи по определению пределов функции одной переменной, его отличие от задачи с двумя переменными и математическое представление результатов расчетов.
презентация, добавлен 17.09.2013Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.
контрольная работа, добавлен 18.09.2013Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
лекция, добавлен 29.09.2013- 125. Высшая математика
Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.
контрольная работа, добавлен 01.05.2010