Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
Подобные документы
Умови неперервної залежності від вихідних даних розв'язків задач з інтегральними умовами для диференціальних, псевдодиференціальних рівнянь із частинними похідними другого порядку. Методи доведення метричних теорем про оцінки знизу малих знаменників.
автореферат, добавлен 20.07.2015- 102. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 - 103. Чисельне розв'язування лінійних осесиметричних задач коливання рідини методом інтегральних рівнянь
Розробка ефективних чисельних методів для наближеного розв'язування лінійних задач коливання рідини в осесиметричних контейнерах. Дослідження методики на тестових прикладах для підтвердження застосовності алгоритмів і отриманих теоретичних оцінок похибок.
автореферат, добавлен 26.09.2015 Розробка нових математичних методів для розв’язання крайових задач теорії аналітичних функцій. Розширення класу інтегральних рівнянь типу згортки зі змінними коефіцієнтами, які ефективно розв’язуються за допомогою перетворення Фур’є у квадратурах.
автореферат, добавлен 30.10.2015- 105. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Дослідження нових типів систем N-арних інтегральних рівнянь. Двовимірні системи парних та потрійних інтегральних рівнянь з функціями Бесселя. Системи потрійних інтегральних рівнянь з функціями Ватсона. Теореми про умови існування розв’язків цих систем.
автореферат, добавлен 18.11.2013Чисельні і аналітичні методи розв’язання систем алгебраїчних рівнянь в Маткаді. Використання обчислювального блоку зі службовим словом-директивою Given. Задання початкових наближень. Обмежувальні умови виразу функцією. Корінь трансцендентного рівняння.
лабораторная работа, добавлен 19.07.2017Умови розв’язності задач з параметрами для сингулярних інтегральних рівнянь, їх сумісність з обмеженнями. Обґрунтування ітераційного і проекційно-ітеративного методів розрахунку. Оцінка збіжності та похибки, побудованих зручних обчислювальних схем.
автореферат, добавлен 05.01.2014Приклад розв’язання системи лінійних алгебраїчних рівнянь з невідомими на прикладі виключення та заміни невідомого, однорідних та симетричних систем рівнянь, виключення спільного виразу, системи рівнянь з модулями та екстремуму функції кількох змінних.
лекция, добавлен 25.01.2014Вивчення особливостей чисельно-аналітичного способу дослідження крайових задач для зліченних систем нелінійних диференціальних рівнянь першого порядку. Оцінка ітераційних схем побудови розв’язків у вигляді рівномірно збіжної послідовності функцій.
автореферат, добавлен 23.02.2014Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
статья, добавлен 28.07.2016Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Особливості навчальної програми вивчення рівнянь та нерівностей в школі, методика їх розв'язування. Розв'язування типових вправ з використанням теореми Вієта. Вивчення формули коренів квадратного рівняння. Математичний розрахунок дискримінанти та кореня.
разработка урока, добавлен 09.10.2018"Простіші" рівнянь з параметрами (лінійні многочлени відносно невідомої величини і параметра). Ілюстрація того факту, що схожі за виглядом рівняння, які містять параметр і знак модуля, є досить складними і не можуть розв’язуватися однаковими способами.
статья, добавлен 06.03.2019- 116. Розв'язування задачі оптимального керування правою частиною неоднорідного бігармонічного рівняння
Дослідження задачі знаходження оптимальної функції правої частини неоднорідного бігармонічного рівняння, для розв'язування якої використовується один з варіантів градієнтного методу. Розв'язання системи інтегральних рівнянь Фредгольма першого роду.
статья, добавлен 27.09.2016 Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
статья, добавлен 27.11.2019- 118. Перетворення Лапласа
Оригінали і їхні зображення. Властивості перетворення Лапласа. Формула звертання Рімана-Мелліна. Операційний метод розв’язування лінійних диференціальних рівнянь з перемінними коефіцієнтами, рівнянь у частинних похідних, рівнянь у кінцевих різницях.
курсовая работа, добавлен 09.04.2014 Застосуванню тригонометрії до розв'язування задач з алгебри у старшій школі. Методичні особливості застосування тригонометрії до розв'язування. Встановлення коренів рівняння на певному відрізку. Розв'язування системи рівнянь і доведення нерівності.
статья, добавлен 05.02.2019- 120. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 Вивчення проблеми знаходження конструктивних умов існування та побудови алгоритмів знаходження розв'язків нетерових крайових задач для лінійних і слабконелінійних систем диференціальних рівнянь з імпульсним впливом. Побудова узагальненого оператора Гріна.
автореферат, добавлен 28.08.2015Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Розроблення методів побудови асимптотичних розв’язків сингулярно збурених систем нетерового типу для лінійних і нелінійних звичайних диференціальних рівнянь. Новий підхід до дослідження узагальнених початкових і крайових задач з імпульсною дією.
автореферат, добавлен 28.07.2014Дослідження умов асимптотичної стійкості в середньому та середньому квадратичному розв'язках лінійних різницевих рівнянь з марковськими коефіцієнтами. Одержання достатніх умов асимптотичної стійкості за допомогою функцій Ляпунова з матричним аргументом.
статья, добавлен 14.09.2016Аналіз чисельних методів розв'язування рівнянь з однією змінною. Зміст теореми про оцінку похибки наближеного значення кореня. Уточнення степеню концепцією поділу відрізка пополам. Характеристика комбінованого способу дотичних і хорд та простої ітерації.
курсовая работа, добавлен 26.07.2015