Математические уравнения
Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.
Подобные документы
Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Основные понятия об обыкновенных дифференциальных уравнениях. Однородные дифференциальные уравнения 1-го порядка с разделяющимися переменными. Обобщенное однородное и линейные дифференциальные уравнения. Уравнение Бернулли и интегрирующий множитель.
контрольная работа, добавлен 28.06.2014Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
статья, добавлен 31.05.2013Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.
статья, добавлен 30.09.2012Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.
автореферат, добавлен 02.03.2018Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.
курс лекций, добавлен 11.10.2014Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013- 59. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.
курсовая работа, добавлен 08.01.2018Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Извлечение квадратного корня из отрицательного числа как основное содержание формулы Кардано. Анализ условия равенства суммы обоих кубических радикалов их удвоенной действительной части. Методика приведения исходного уравнения к каноническому виду.
статья, добавлен 24.01.2016Исследование локальной краевой задачи для уравнения высокого порядка в ограниченной области и ее применение в механике. Выведение доказательства разрешимости задачи методом понижения порядка. Рассмотрение частного случая сформулированной общей задачи.
статья, добавлен 31.07.2018Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Основные правила определения дифференциального оператора Лапласа. Механический смысл вектора ротора. Сущность поверхностного интеграла II-го рода. Характеристика главных способов вычисления потока. Построение уравнения плоскости треугольника, его расчет.
лекция, добавлен 17.01.2014Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Исследование краевой задачи для уравнения в частных производных третьего порядка гиперболического типа в бесконечной области трехмерного евклидова пространства. Доказательство однозначной разрешимости задачи методом Римана-Адамара с помощью функции.
статья, добавлен 20.07.2018Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Методика определения напряженности осевого импульсного магнитного поля, проникшего в движущуюся проводящую оболочку, при помощи дифференциального уравнения первого порядка. Решение краевой задачи для уравнения проникновения поля в частных производных.
статья, добавлен 29.07.2016Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.
презентация, добавлен 26.10.2013Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Анализ локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения, рассматриваемого в простой области. Изучение корректности "в целом" ряда обратных задач для неустановившегося математического равенства.
статья, добавлен 12.05.2018Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.
контрольная работа, добавлен 07.03.2016Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.
курсовая работа, добавлен 16.12.2014