Эконометрические модели
Три основных класса моделей, которые применяются для анализа и прогноза в эконометрике. Понятие о временных рядах и их виды. Решение задач определения парной и множественной регрессии. Использование независимых переменных в регрессионных моделях.
Подобные документы
Общие понятия эконометрических моделей и задачи экономического анализа, решаемые на их основе. Применение регрессионного анализа в экономике. Определение параметров модели парной линейной регрессии. Модели стационарных и нестационарных временных рядов.
курс лекций, добавлен 14.10.2017Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
шпаргалка, добавлен 25.02.2014Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015- 4. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Применение фиктивных переменных в моделях множественной регрессии. Использование фиктивных переменных в моделях с временными рядами. Введение качественных факторов в регрессионную модель. Способ преобразования качественных переменных в количественные.
контрольная работа, добавлен 01.03.2016Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.
контрольная работа, добавлен 14.06.2011Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Этапы построения эконометрической модели. Применение парной регрессии в исследованиях. Задачи корреляционно-регрессионного анализа. Виды функций, часто используемых в эконометрическом моделировании. Показатели силы связи в моделях парной регрессии.
презентация, добавлен 09.11.2013Описание и примеры системы эконометрических уравнений. Характеристика основных методов оценки параметров эконометрических моделей множественной регрессии. Основные принципы моделирования временных рядов. Изменения характера тенденции временного ряда.
контрольная работа, добавлен 17.10.2014Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Три класса методов, которые применяются для анализа и прогнозирования экономических систем. Эконометрические методы, их использование для оценки параметров экономико-математических моделей логистики (управления запасами). Прогнозирование сбора налогов.
контрольная работа, добавлен 24.03.2015Динамический ряд. Понятие о рядах динамики и их виды, методы выявления основных тенденций в рядах динамики: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Понятие множественной регрессии и процесс построения её модели.
научная работа, добавлен 12.04.2010Понятие фиктивных переменных. Особенности их применения для функции спроса. Построение уравнения регрессии. Фиктивные переменные сдвига и взаимодействия, а также во временных рядах, в моделях с сезонностью. Моделирование линейного временного тренда.
контрольная работа, добавлен 11.12.2013Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.
контрольная работа, добавлен 28.04.2016Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
лабораторная работа, добавлен 18.09.2012Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.
контрольная работа, добавлен 02.02.2014Понятие и виды нелинейных моделей регрессии. Приведение нелинейной функции к линейному виду с помощью замены переменных и логарифмирования. Анализ влияния уровня инфляции на количество безработных с помощью парной нелинейной регрессии и линеаризации.
курсовая работа, добавлен 22.05.2012Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.
контрольная работа, добавлен 23.11.2016Основные элементы эконометрической модели. Спецификация модели парной линейной регрессии. Основные предположения регрессионного анализа. Коэффициенты детерминации и парной корреляции. Проверка статистической значимости в парной линейной регрессии.
реферат, добавлен 27.12.2016Эконометрические модели, описываемые системой регрессионных уравнений и тождеств, которые не содержат подлежащих оценке параметров модели, не включая случайной составляющей. Модель спроса и предложения. Одновременная оценка регрессионных уравнений.
контрольная работа, добавлен 16.04.2014Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.
контрольная работа, добавлен 04.02.2013