Эконометрические модели

Три основных класса моделей, которые применяются для анализа и прогноза в эконометрике. Понятие о временных рядах и их виды. Решение задач определения парной и множественной регрессии. Использование независимых переменных в регрессионных моделях.

Подобные документы

  • Общие понятия эконометрических моделей и задачи экономического анализа, решаемые на их основе. Применение регрессионного анализа в экономике. Определение параметров модели парной линейной регрессии. Модели стационарных и нестационарных временных рядов.

    курс лекций, добавлен 14.10.2017

  • Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.

    шпаргалка, добавлен 25.02.2014

  • Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.

    учебное пособие, добавлен 18.03.2015

  • Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.

    курс лекций, добавлен 16.05.2016

  • Применение фиктивных переменных в моделях множественной регрессии. Использование фиктивных переменных в моделях с временными рядами. Введение качественных факторов в регрессионную модель. Способ преобразования качественных переменных в количественные.

    контрольная работа, добавлен 01.03.2016

  • Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.

    реферат, добавлен 31.03.2017

  • Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.

    презентация, добавлен 26.12.2014

  • Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.

    контрольная работа, добавлен 14.06.2011

  • Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.

    курс лекций, добавлен 10.02.2014

  • Этапы построения эконометрической модели. Применение парной регрессии в исследованиях. Задачи корреляционно-регрессионного анализа. Виды функций, часто используемых в эконометрическом моделировании. Показатели силы связи в моделях парной регрессии.

    презентация, добавлен 09.11.2013

  • Описание и примеры системы эконометрических уравнений. Характеристика основных методов оценки параметров эконометрических моделей множественной регрессии. Основные принципы моделирования временных рядов. Изменения характера тенденции временного ряда.

    контрольная работа, добавлен 17.10.2014

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.

    контрольная работа, добавлен 08.02.2022

  • Три класса методов, которые применяются для анализа и прогнозирования экономических систем. Эконометрические методы, их использование для оценки параметров экономико-математических моделей логистики (управления запасами). Прогнозирование сбора налогов.

    контрольная работа, добавлен 24.03.2015

  • Динамический ряд. Понятие о рядах динамики и их виды, методы выявления основных тенденций в рядах динамики: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Понятие множественной регрессии и процесс построения её модели.

    научная работа, добавлен 12.04.2010

  • Понятие фиктивных переменных. Особенности их применения для функции спроса. Построение уравнения регрессии. Фиктивные переменные сдвига и взаимодействия, а также во временных рядах, в моделях с сезонностью. Моделирование линейного временного тренда.

    контрольная работа, добавлен 11.12.2013

  • Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.

    контрольная работа, добавлен 04.05.2011

  • Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.

    контрольная работа, добавлен 28.04.2016

  • Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.

    лабораторная работа, добавлен 18.09.2012

  • Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.

    контрольная работа, добавлен 02.02.2014

  • Понятие и виды нелинейных моделей регрессии. Приведение нелинейной функции к линейному виду с помощью замены переменных и логарифмирования. Анализ влияния уровня инфляции на количество безработных с помощью парной нелинейной регрессии и линеаризации.

    курсовая работа, добавлен 22.05.2012

  • Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.

    контрольная работа, добавлен 23.11.2016

  • Основные элементы эконометрической модели. Спецификация модели парной линейной регрессии. Основные предположения регрессионного анализа. Коэффициенты детерминации и парной корреляции. Проверка статистической значимости в парной линейной регрессии.

    реферат, добавлен 27.12.2016

  • Эконометрические модели, описываемые системой регрессионных уравнений и тождеств, которые не содержат подлежащих оценке параметров модели, не включая случайной составляющей. Модель спроса и предложения. Одновременная оценка регрессионных уравнений.

    контрольная работа, добавлен 16.04.2014

  • Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.

    контрольная работа, добавлен 04.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.