Алгоритм построения развертки поверхностей

Развертка поверхности методом триангуляции. Определение натуральных величин треугольников. Обозначение направляющего единичного вектора следа и его координаты. Расчет угла, который составляет вектор нормали плоскости, совмещение плоскости треугольника.

Подобные документы

  • Работы Герона как энциклопедия античной прикладной математики. Вычисление площади треугольника по его сторонам. Понятие героновых треугольников и пример простейшего такого треугольника. Формулы Герона для произвольного и равнобедренного треугольников.

    презентация, добавлен 14.01.2016

  • Алгоритм построения пересечения двух поверхностей. Рассмотрение построения линии пересечения трехгранных призмы и пирамиды. Способы построения линии пересечения криволинейной поверхности с плоскостями (гранями многогранника) и с прямыми (его ребрами).

    лекция, добавлен 24.07.2014

  • Обозначение вершин и сторон треугольника. Виды треугольников (остроугольный, прямоугольный и тупоугольный), признаки их равенства. Сумма углов треугольника. Замечательные линии и точки в треугольнике. Соотношение сторон в произвольном треугольнике.

    презентация, добавлен 06.05.2014

  • Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.

    учебное пособие, добавлен 27.08.2017

  • Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.

    презентация, добавлен 28.03.2018

  • Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.

    курсовая работа, добавлен 09.06.2013

  • Вычисление определителей, матрицы и их свойства. Решение систем линейных уравнений и типовых примеров задания 1 РГР. Векторные и скалярные величины. Разложение вектора по координатным осям. Длина и направление отрезка. Прямая линия на плоскости.

    методичка, добавлен 22.09.2017

  • Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.

    реферат, добавлен 16.05.2013

  • Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.

    дипломная работа, добавлен 06.03.2014

  • Основные инвариантные свойства параллельного проектирования: проекция точки есть точка; проекция прямой на плоскость есть прямая; проекции взаимно параллельных прямых также взаимно параллельны. Изображение на плоскости треугольника, квадрата, ромба.

    презентация, добавлен 09.01.2014

  • Понятие параллельного переноса на вектор (сдвиг всей плоскости в направлении данного вектора на его длину). Характеристика параллельного переноса различных фигур. Понятие параллельного переноса в пространстве, его основные свойства (движение и пр.).

    презентация, добавлен 05.12.2014

  • Основные различия между прямоугольной системой координат и ортонормированным базисом. Способы определения коллинеарности векторов плоскости. Характеристика пространственного базиса и аффинной системы координат. Примеры задач по геометрии, их решение.

    контрольная работа, добавлен 04.11.2012

  • Характеристика шара и шаровой поверхности. Взаимное расположение шара и плоскости. Нахождение объёмов тел с помощью принципа Кавальери и интеграла. Алгоритм вычисления объема и площади поверхности шарового слоя и шарового сектора. Примеры решения задач.

    курсовая работа, добавлен 01.12.2015

  • Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.

    презентация, добавлен 21.09.2017

  • Построение проекций линий пересечения поверхностей способом вспомогательных секущих плоскостей и концентрических сфер. Анализ и характеристика заданных поверхностей. Построение развертки заданной поверхности. Линия пересечения конуса и цилиндра.

    контрольная работа, добавлен 06.11.2013

  • Геометрические и аффинные преобразования на плоскости. Применение однородных координат для матричной формы записи уравнений аффинных преобразований. Свойства и способы задания аффинного преобразования плоскости, которые переводят прямую в прямую.

    реферат, добавлен 08.04.2020

  • Расчет ежедневного объема выпуска каждого вида продукции матричным методом и методом Гаусса. Вычисление определителя матрицы и ее обратного типа. Определение коэффициентов прямых затрат, построение вектора валового выпуска конечного продукта отрасли.

    контрольная работа, добавлен 26.11.2014

  • Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.

    реферат, добавлен 01.03.2009

  • Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.

    контрольная работа, добавлен 15.04.2016

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Изучение бутылки Клейна как склейки двух листов Мебиуса вдоль края евклидовом пространстве. Определение вектора нормали вдоль средней окружности. Построение поверхности бутылки Клейна с использованием математического пакета. Поиск и расчет линии края.

    статья, добавлен 05.10.2014

  • Порядок определения центра рассеивания случайного вектора и вычисление условного математического ожидания. Построение ковариационной и корреляционной матрицы. Закон распределения случайных величин и вероятности экспоненциального закона распределения.

    контрольная работа, добавлен 19.03.2012

  • Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.

    шпаргалка, добавлен 25.03.2011

  • Алгоритм и основные этапы построения треугольной сети для заданной посредством контрольных точек поверхности NURBS. Сравнительная характеристика и анализ преимуществ использования двух распространенных методов подразбиений – Loop и Modified Butterfly.

    статья, добавлен 21.06.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.