Теория вероятностей и математическая статистика

Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

Подобные документы

  • Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).

    курс лекций, добавлен 27.12.2015

  • Дифференциальное уравнение Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Нахождение кривых распределения вероятностей и программное обеспечение как примеры решения задач математической статистики.

    дипломная работа, добавлен 26.02.2020

  • Изучение особенностей непосредственного подсчета вероятностей. Определение сущности статистической и геометрической вероятности. Характеристика центральной предельной теоремы. Исследование распределения случайных величин. Анализ теоремы Линдеберга.

    контрольная работа, добавлен 30.03.2015

  • Сущность теории вероятности, ее особенности применения при решении задач. Благоприятные исходы, их главные черты. Рассмотрение формулы полной вероятности. Функция распределения дискретной случайной величины. Понятие закона распределения их суммы.

    контрольная работа, добавлен 05.12.2015

  • Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.

    доклад, добавлен 21.02.2013

  • Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.

    контрольная работа, добавлен 28.03.2022

  • Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.

    учебное пособие, добавлен 25.11.2013

  • Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.

    задача, добавлен 24.02.2014

  • Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.

    презентация, добавлен 01.11.2013

  • Методика нахождения константы из свойства плотности распределения. Методы определения плотности вероятностей нормально распределенной случайной величины. Порядок вычисления математического ожидания, среднего квадратического отклонения и дисперсии.

    контрольная работа, добавлен 22.04.2015

  • Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.

    учебное пособие, добавлен 18.10.2014

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Вероятностный эксперимент, событие. Случайная величина и её числовые характеристики и законы распределений. Распределение Стьюдента, Фишера. Применение таблиц стандартизированного нормального распределения. Значения ряда экономических показателей.

    контрольная работа, добавлен 13.05.2014

  • Характеристики двумерной случайной величины. Анализ способов нахождения условных распределений в дискретном случае. Изучение понятия и сущности условного математического ожидания. Изучение основных свойств корреляционного отношения, условной плотности.

    презентация, добавлен 26.09.2017

  • Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.

    реферат, добавлен 26.06.2013

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Порядок формирования аналитической группировки по заданным данным. Групповые средние арифметические показателей. Эмпирическое и теоретическое уравнение регрессии. Доверительный интервал выборки, механизм и этапы его определения, необходимые расчеты.

    контрольная работа, добавлен 26.02.2012

  • Среднее квадратическое отклонение дискретной случайной величины по известному закону её распределения. Определение дифференциальной функции распределения (плотности вероятности), математического ожидания и дисперсии непрерывной случайной величины.

    контрольная работа, добавлен 23.03.2014

  • Теория вероятностей и математическая статистика. Реализация основных процедур математико-статического анализа данных. Статическая проверка гипотез с применением модели "хи-квадрат". Умение специалистами использовать ее таблицу в прикладной статистике.

    реферат, добавлен 24.10.2014

  • Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.

    контрольная работа, добавлен 12.11.2015

  • Анализ вероятности события. Расчет среднего квадратического отклонения, выборочной дисперсии статистического распределения выборки. Оценка дисперсии, корреляции согласно корреляционной таблице. Гипотеза о законе распределения по критерию согласия Пирсона.

    контрольная работа, добавлен 08.12.2015

  • Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.

    лекция, добавлен 26.09.2017

  • Оценка параметров генеральной совокупности. Итоги выборочных наблюдений. Доверительный интервал как термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки.

    презентация, добавлен 19.07.2015

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.