Періодичні розв’язки диференціальних рівнянь із запізненням
Умови існування періодичних розв’язків диференціальних рівнянь із запізненням. Чисельно-аналітичний метод дослідження періодичних розв’язків інтегро-диференціальних рівнянь другого порядку із запізненням у випадку Т-систем першого і другого класу.
Подобные документы
Дослідження асимптотичних властивостей розв’язків лінійних диференціально-функціональних рівнянь нейтрального типу. Особливості знаходження достатніх умов асимптотичної стійкості тривіального розв’язку квазілінійних диференціально-функціональних рівнянь.
автореферат, добавлен 29.07.2014Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле, що залишають незмінним точковий спектр, повноту та мінімальність системи власних функцій. Дослідження умови єдиності розв’язків збурених задач.
автореферат, добавлен 28.09.2015Вивчення крайових задач для вироджених систем звичайних диференціальних рівнянь за припущення, що відповідна вироджена лінійна система диференціальних рівнянь зводиться до центральної канонічної форми. Отримання ефективних коефіцієнтних умов біфуркації.
автореферат, добавлен 20.07.2015Встановлення умов стійкості за Ляпуновим автономної системи диференціальних рівнянь. Вивчення поведінки розв'язків градієнтної систем рівнянь з імпульсною дією. Дослідження розривних векторних полів на гладких многовидах. Нерухомі точки дифео-морфізмів.
автореферат, добавлен 13.08.2015Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014- 81. Питання єдиності, повноти та самоспряженості у крайових задачах для систем диференціальних рівнянь
Побудова трикутних операторів перетворення для систем диференціальних рівнянь. Визначення необхідних умов повноти системи кореневих функцій оператора Штурма-Ліувілля з виродженими крайовими умовами. Розв'язок оберненої задачі за спектральною матрицею.
автореферат, добавлен 20.07.2015 Викладення прикладів застосування диференціальних рівнянь у великій кількості математичних моделей, явищ і процесах у різних галузях науки (біології, фізиці). Розв’язання задач на знаходження кривої, яка проходить через певну точку; швидкості та відстані.
лекция, добавлен 30.04.2014Розробка нових ефективних методів розв’язання крайових задач для еліптичних систем диференціальних рівнянь з частинними похідними на основі методу р-аналітичних функцій за допомогою їх інтегральних зображень через граничні значення аналітичних функцій.
автореферат, добавлен 23.11.2013Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Дослідження дискретно-неперервних крайових задач для векторних рівнянь Теорія граничної точки й граничного круга Вейля на випадок систем диференціальних рівнянь першого порядку та квазідиференціальних рівнянь довільного скінченного порядку з мірами.
автореферат, добавлен 13.07.2014Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле. Незмінність точкового спектру, повнота та мінімальність системи власних функцій. Дослідження властивостей розв’язків задач, отриманих у процесі.
автореферат, добавлен 26.02.2015Розв’язок задачі Коші для системи рівнянь із частинними похідними другого порядку за часовою змінною у класах аналітичних функцій та у просторах Соболєва. Розв’язки двоточкової задачі. Класи аналітичних функцій та простори Соболєва як класи єдиності.
автореферат, добавлен 28.07.2014Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Розробка (на основі методу Вішика-Люстерника) алгоритмів побудови асимптотичних розв’язків крайових задач Діріхле та Неймана, їх обґрунтування. Доведення теореми про порядок. Рішення диференціальних рівнянь параболічного типу при умовах імпульсної дії.
автореферат, добавлен 26.08.2014Вивчення монотонного двостороннього методу для наближеного інтегрування задач з параметрами в нерозділених двоточкових крайових умовах у випадку систем квазілінійних диференціальних рівнянь. Встановлення достатніх умов існування та єдиності їх розв’язків.
автореферат, добавлен 26.08.2015Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.
контрольная работа, добавлен 13.04.2011Дослідження асимптотичних властивостей розв'язків отриманих нескінченних систем. Основи застосування алгоритму лімітант при чисельних двосторонніх оцінках розв'язків регулярних і квазірегулярних нескінченних систем лінійних алгебраїчних рівнянь.
автореферат, добавлен 20.04.2014Дослідження збіжності атрактора регуляризованої системи до атрактора системи Захарова. Ознайомлення з теоремою існування і єдиності гладких розв'язків системи рівнянь Захарова у випадку одновимірної області. Вивчення гладкості елементів атрактора.
автореферат, добавлен 28.10.2015- 94. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Метод нерівноважних кластерних розкладів побудови розв'язку ланцюжка рівнянь Боголюбова на випадок квантових систем частинок. Доведення теореми існування та єдиності кумулянтного зображення розв'язку початкової задачі ланцюжка рівнянь квантових систем.
автореферат, добавлен 25.02.2015Оригінали і їхні зображення. Властивості перетворення Лапласа. Формула звертання Рімана-Мелліна. Операційний метод розв’язування лінійних диференціальних рівнянь з перемінними коефіцієнтами, рівнянь у частинних похідних, рівнянь у кінцевих різницях.
курсовая работа, добавлен 09.04.2014Умови, що забезпечують існування нелокалізованих розв'язків спеціального виду рівнянь Кадомцева-Петвіашвілі та двомірних рівнянь Джонсона. Розробка методу розв'язання їх асимптотичної поведінки при великих значеннях часу в областях переднього фронту.
автореферат, добавлен 25.02.2014Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Дослідження проблеми знаходження конструктивних умов існування та побудові розв'язків нелінійних нетерових крайових задач для систем диференціальних рівнянь. Способи побудови модифікованих ітераційних процедур з використанням техніки найменших квадратів.
автореферат, добавлен 20.07.2015Дослідження нових типів систем N-арних інтегральних рівнянь. Двовимірні системи парних та потрійних інтегральних рівнянь з функціями Бесселя. Системи потрійних інтегральних рівнянь з функціями Ватсона. Теореми про умови існування розв’язків цих систем.
автореферат, добавлен 18.11.2013