Математическая обработка статистических данных при пассивном эксперименте
Варианты статистической обработки материалов пассивного эксперимента методом классического многомерного регрессионного анализа и регрессии по методу главных компонент. Выявление зависимости общего модуля деформации торфяной залежи от ряда ее параметров.
Подобные документы
Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.
лабораторная работа, добавлен 06.02.2015Эконометрия как вид экономического анализа совокупности статистических данных. Математический образ экономического явления. Свойства эконометрического моделирования. Принцип инертности при прогнозировании. Задачи корреляционно-регрессионного анализа.
лекция, добавлен 29.09.2013Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.
контрольная работа, добавлен 01.06.2020Уравнение линейной парной регрессии одного признака от другого. Расчет линейного коэффициента парной корреляции и коэффициента детерминации. Уравнение множественной регрессии, выбор факторов. Автокорреляция уровней временного ряда, его структура.
контрольная работа, добавлен 21.01.2013Методы и модели регрессионного анализа. Переменные регрессии, классическая и обобщенная линейная модели. Системы эконометрических уравнений. Анализ временных рядов и факторы, влияющие на значения элементов ряда. Алгоритмические методы сглаживания.
курс лекций, добавлен 10.02.2016Методологические основы применения регрессионного анализа в эконометрике. Интервальная оценка функции регрессии и параметров модели. Особенности использования коэффициента детерминации. Определение дисперсии и проверка достоверности по критерию Фишера.
курсовая работа, добавлен 17.09.2014Оценка статистической значимости параметров регрессии. Прогнозирование чистого дохода и расчет доверительного интервала для коэффициентов регрессии и математического ожидания. Вычисление коэффициента детерминации, анализ наличия автокорреляции остатков.
контрольная работа, добавлен 20.05.2012Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.
учебное пособие, добавлен 14.04.2015Построение средствами регрессионного анализа математической модели зависимости стоимости квартиры в городе Смоленске от характеристик квартиры и ее расположения в городе. Построение уравнения множественной регрессии. Матрица парных коэффициентов.
статья, добавлен 21.02.2018Этапы построения эконометрической модели. Применение парной регрессии в исследованиях. Задачи корреляционно-регрессионного анализа. Виды функций, часто используемых в эконометрическом моделировании. Показатели силы связи в моделях парной регрессии.
презентация, добавлен 09.11.2013Анализ собственно-корреляционных параметрических методов изучения связи, оценка существенности корреляции. Понятие регрессионного анализа и оценка параметров уравнений регрессии. Вычисление значений линейного и множественного коэффициентов корреляции.
контрольная работа, добавлен 14.10.2009Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.
реферат, добавлен 24.12.2011Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии. Оценка средней ошибки аппроксимации качества уравнений. Оценка статистической надежности результатов моделирования.
контрольная работа, добавлен 16.05.2016Построение процедуры интуитивно-логического мышления человека - цель прогнозирования на основе экспертных оценок. Уравнение регрессии – математическая функция, подбирающаяся на основе исходных статистических данных зависимой и объясняющих переменных.
курсовая работа, добавлен 18.12.2021Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Асимптотическое поведение ряда оценок степени полинома при восстановлении зависимости. Оценки размерности и структуры модели в регрессии; числа элементов смеси в задачах классификации. Размерность модели в факторном анализе и многомерном шкалировании.
статья, добавлен 16.01.2021Методика определения среднеквадратического отклонения. Составление вариационного ряда по возрастанию после отсева промахов. Вычисление ширины, границы бинов и оценки средней плотности вероятности. Построение гистограммы и расчет критерия Пирсона.
курсовая работа, добавлен 03.04.2015Понятие о регрессионной зависимости и коэффициенте детерминации. Построение трендов и получение прогнозных значений на основе регрессионного анализа. Порядок проведения корреляционного анализа средствами Excel. Особенности исследования временных рядов.
курсовая работа, добавлен 15.12.2013Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.
контрольная работа, добавлен 28.08.2017- 71. Анализ данных
Особенности дисперсионного, регрессионного, корреляционного, кластерного, факторного анализа данных, понятие временных рядов. Использование коэффициента корреляции в зависимости от типа переменных. Сущность, применение критерия Аббе, коэффициента Пирсона.
презентация, добавлен 11.04.2016 Статистический подход в методе главных компонент. Многомерное нормальное распределение вариаций. Линейная модель метода главных компонент. Метод Фадеева – одновременное вычисление коэффициентов характеристического многочлена и присоединенной матрицы.
реферат, добавлен 27.10.2017Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Кибернетический подход к организации экспериментальных исследований сложных объектов и процессов. Определение сущности регрессионного анализа и управления модельным экспериментом. Использование факторного эксперимента и метода крутого восхождения.
презентация, добавлен 06.04.2018Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.
задача, добавлен 20.06.2016