Тригонометрические функции, их свойства, графики и применение
Тригонометрические функции как подвид элементарных функций. Анализ четности и периодичности, особенности построения графиков. Обратные тригонометрические функции и их характеристика. История развития тригонометрии и основные сферы ее применения.
Подобные документы
Элементы комбинаторики, перестановки, размещения, сочетания. Формульное задание элементарных функций алгебры логики. Принцип двойственности. Разложение булевой функции по переменным. Задачи и упражнения по алгебре логики. Минимизация булевых функций.
учебное пособие, добавлен 08.02.2015Анализ функций, не имеющих производной: разрывные и непрерывные; понятия функций; непрерывные функции, не имеющие производной ни в одной точке (функции Ван-дер-Вардена); правая и левая производные и функции комплексного переменного (условие Коши-Римана).
лекция, добавлен 27.05.2014Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
курс лекций, добавлен 23.10.2013Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
контрольная работа, добавлен 25.04.2015- 105. Производная функции
Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016 Характеристика вклада П.Л. Чебышева в теоретическое исследование аппроксимации функций. Особенности применения интегрального логарифма для аппроксимации функции, обозначающей совокупность простых чисел, которая меньше или равна заданному значению.
статья, добавлен 03.03.2018- 107. Интеграл Лебега
Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.
реферат, добавлен 09.04.2013 Рассмотрение определения функции в математическом анализе. Расчет предела функциональной последовательности. Бесконечно малые функции и их основные свойства. Изучение равенства односторонних пределов. Ограничение функций сверху и снизу на множестве.
презентация, добавлен 16.10.2014Обучение учащихся и студентов отысканию производной сложной функции. Правила вычисления производных алгебраической суммы функций, произведения и частного функций. Упражнения на применение изученных формул и правил. Дифференцирование сложной функции.
статья, добавлен 18.02.2020Определение понятия возрастающих и убывающих показательных функций, построение их графиков. Практическое применение показательной функции для диагностики заболеваний, в формуле разрядки конденсаторов, при вычислении периода радиоактивного полураспада.
презентация, добавлен 05.03.2012Анализ произвольной функции, определенной на интервале от нуля до бесконечности. Свойства усредненной функции, ее первой и второй производных. Анализ их поведения в случае осциллирующих коэффициентов. Определение интегралов в числителе и знаменателе.
контрольная работа, добавлен 26.02.2020Биортогональные разложения различных классов функции и их применение в разделах математики. Возникновение необходимости построения биортогональных систем, коэффициенты которых легко выражаются. Условия, обеспечивающие восстановление непрерывной функции.
статья, добавлен 02.02.2019Решение задач при построении графиков функций, содержащих знак модуля. Применение основного действия при построении графиков - "снятие модуля". Замена этой операции геометрическим преобразованием графиков. Раскрытие знака модуля согласно его определению.
лекция, добавлен 24.11.2011- 114. Гамма-функция Эйлера
Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.
курсовая работа, добавлен 22.04.2011 Понятие случайной величины в статистическом анализе, дискретные и непрерывные случайные величины. Свойства дифференциальной функции распределения вероятностей. Статистические функции непрерывных распределений. Изучение в Microsoft Excel данных функций.
курсовая работа, добавлен 06.10.2011Основные свойства треугольников. Признаки равенства треугольников. Основная аксиома стереометрии. Углы, проекции, многогранные углы. Функция, однозначная и многозначная функция. Область определения и область значений функции. Функции и их графики.
лекция, добавлен 22.03.2010- 117. Свойства функций
Основные понятия функций. Числовая и сходящиеся последовательности. Бесконечный, односторонний, замечательный пределы и пределы на бесконечности. Принцип сходимости, предел функции и теорема Гейне. Непрерывность функции, композиции и точки разрыва.
реферат, добавлен 17.01.2011 Характеристика аналитических функций комплексной переменной с малыми параметрами, порождаемыми некоторыми операторами. Исследование асимптотического поведения функции. Особенности решения задачи с использованием линии уровня гармонических функции.
статья, добавлен 14.08.2020Определение предела последовательности и предела функций в математике. Бесконечно малые и большие функции и их свойства. Предел постоянной величины равен самой постоянной. Вычисление постоянного множителя. Непрерывность функций нескольких переменных.
презентация, добавлен 02.04.2015Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.
учебное пособие, добавлен 05.04.2011История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.
курсовая работа, добавлен 29.10.2013Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.
курсовая работа, добавлен 16.04.2015Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
контрольная работа, добавлен 17.12.2013- 124. Исследование функций
Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.
контрольная работа, добавлен 20.09.2011 Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011