Частные Ферма и логарифмирование в мультипликативной группе кольца вычетов по примарному модулю
Определение функций частное Ферма и их свойства. Примеры возможного использования функций Ф(а) для вычисления индексов элементов в группе Z(m). Методы получения и прикладное значение логарифмирования в мультипликативной группе кольца вычетов по модулю.
Подобные документы
Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.
реферат, добавлен 30.03.2017Методы получения функционального уравнения для доказательства великой теоремы Ферма. Исследование матрицы распределения составных чисел в ряду натуральных числовых значений. Составление системы уравнений для нахождения показателей пифагоровых троек.
учебное пособие, добавлен 30.03.2017Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.
курсовая работа, добавлен 30.04.2014Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.
статья, добавлен 01.10.2015Подходы к доказательству теоремы Ферма и обоснование ее физического смысла. Принципы и этапы решения исследуемой задачи с использованием современных технологий. Описание физической сущности идей, заложенных в абстракции общей теории относительности.
статья, добавлен 23.11.2018Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Доказательство Великой теоремы Ферма на основе соответствия эллиптических кривых и модулярных форм. Применение формулы бинома И. Ньютона. Преобразование уравнения в эквивалентное кубическое, где кривая, соответствующая уравнению, является эллиптической.
курсовая работа, добавлен 30.03.2017Доказательство теоремы о том, что число регулярных простых чисел бесконечно. Сравнение Куммера, теорема Штаудта. Принцип бесконечного понижения (спуск). Доказательство теоремы о произведении третьего простого натурального нечетного числа на дробное.
статья, добавлен 03.03.2018Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.
реферат, добавлен 30.11.2023Завершение проблемы великой теоремы Ферма (ТФ). Бесконечный спуск для нечётных показателей. Доказательство ТФ методами элементарной алгебры. Алгоритм решения Диофантовых уравнений. Закономерность распределения простых чисел в натуральном числовом ряду.
статья, добавлен 30.03.2017Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.
статья, добавлен 20.05.2018Появление и особенности Великой теоремы Ферма, первые варианты доказательства. Влияние Второй мировой войны на изобретения логарифмической линейки. Характеристика метода Колывагина–Флаха, его использование. Математический анализ гипотезы Таниямы–Шимуры.
контрольная работа, добавлен 06.05.2012Сходимость в метрическом пространстве. Свойства линейных операторов. Основная теорема теории вычетов, ее доказательство. Дифференциальное уравнение в полных дифференциалах. Основная теория Коши для аналитической функции. Линейные ограниченные операторы.
шпаргалка, добавлен 13.06.2012На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.
статья, добавлен 11.07.2018Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011- 41. Пьер де Ферма
вникая в геометрические построения древних, Пьер де Ферма совершает открытие: для нахождения максимумов и минимумов площадей фигур не нужны сложные чертежи. Всегда можно составить и решить алгебраическое уравнение, корни которого определяют экстремум.
доклад, добавлен 19.11.2008 Понятие плоской кривой, заданной уравнением третьей степени. Понятие эллиптической кривой. Модулярные формы и модулярные эллиптические кривые. Определение модулярной эллиптической кривой и гипотеза Таниямы. Вывод теоремы Ферма из гипотезы Таниямы.
статья, добавлен 15.09.2012Рассмотрение тригонометрического отображения действительных чисел. На основании этого получение элементарного доказательства последней (великой) теоремы П. Ферма. Вывод тригонометрических выражений. Исследование геометрической интерпретации функции.
статья, добавлен 26.06.2018Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.
творческая работа, добавлен 12.06.2009- 45. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
контрольная работа, добавлен 20.12.2013 Определение основных видов функций, изучение их свойств. Использование аналитического и графического методов задания функций при нахождении ограничений снизу и сверху на множестве; точек максимума и минимума; вычислении наименьшего и наибольшего значений.
реферат, добавлен 05.10.2009Подход к вычислению логарифмов, основанный на использовании эллиптической кривой над числовым полем, обладающей достаточно большим рангом. Сведение задачи логарифмирования в конечном поле и на эллиптической кривой к поднятию точки кривой в числовое поле.
статья, добавлен 15.09.2012Свойства и методы вычисления пределов функций одной переменной. Исследование свойств функций, непрерывных в точке и на интервале, их корни и промежуточные значения, точки разрывов и их классификация. Использование метода сечений при построении графика.
эссе, добавлен 28.07.2013Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018