Эконометрика продвинутый уровень
Проверка значимости исходного предположения. Прогноз размера инвестиций и стоимости валового регионального продукта. Идентификация структурной модели. Использование двухшагового метода наименьших квадратов. Анализ значений для эндогенной переменной.
Подобные документы
Разработка оптимального плана производства, дающего наибольшую прибыль. Построение графика временного ряда; построение линейной модели и оценка ее параметров с помощью метода наименьших квадратов. Оценка адекватности и точности построенной модели.
контрольная работа, добавлен 09.06.2014Подготовка статистической базы эконометрического исследования. Детерминированные и стохастические процессы. Модели дискретного выбора. Бинарные модели, прогнозирование. Иерархический кластерный анализ, производственная функция. Метод наименьших квадратов.
шпаргалка, добавлен 18.03.2016Решение непараметрической задачи восстановления зависимости, которая описывается суммой линейного тренда и периодической функции с известным периодом. Асимптотические распределения параметров и трендовой составляющей, построение интервального прогноза.
статья, добавлен 29.04.2017Установление зависимости темпов роста валового внутреннего продукта от независимых факторов. Построение множественных регрессионных моделей для прогнозирования темпов роста валового внутреннего продукта. Анализ временных рядов, проверка гипотез.
статья, добавлен 24.05.2018Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
презентация, добавлен 18.01.2015Особенности имитационного моделирования, решение задач с помощью обратных функций. Описание метода обратных функций, вероятность работы системы на промежутке времени. Характеристика метода Крамера, применение и специфика метода наименьших квадратов.
курсовая работа, добавлен 24.09.2018Особенности процесса моделирования на этапе введения в производство технологических объектов, удовлетворяющих по потребительским качествам и имеющимся стандартам. Определение неизвестных коэффициентов в режиме формул. Минимизация квадратов отклонений.
статья, добавлен 03.06.2016Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013- 59. Математическое моделирование стоимости квартир на первичном рынке недвижимости города Волгограда
Суть первичного рынка жилой недвижимости Волгограда. Анализ методик, влияющих на создание стоимости квартир на основе линейных и нелинейных моделей множественной регрессии, полученных методом наименьших квадратов и с использованием квантильной регрессии.
статья, добавлен 03.12.2018 Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Понятие гипотезы как научного предположения, вытекающего из теории, которое еще не подтверждено и не опровергнуто. Особенности проверки статистических гипотез как один из основных методов математической статистики, который используется в эконометрике.
контрольная работа, добавлен 24.07.2014Изучение роста валового внутреннего продукта, его прогнозирование. Построение регрессионной модели. Отбор факторов, проведение корреляционного анализа и построение прогноза на основе модели. Моделирование сезонных колебаний с помощью фиктивных переменных.
курсовая работа, добавлен 27.11.2016Множественная регрессия как наиболее распространенный метод в эконометрике. Отбор факторов при построении уравнения множественной регрессии. Метод наименьших квадратов, свойства оценок на его основе. Сравнение влияния различных факторов на результат.
лекция, добавлен 25.04.2015Основные задачи и предпосылки применения корреляционно-регрессионного анализа. Методы определения направления связи, ее характера. Парная регрессия на основе метода наименьших квадратов и метода группировок. Принятие решений на основе уравнения регрессии.
контрольная работа, добавлен 16.04.2016Определение и характеристика сущности парной регрессии и корреляции. Изучение примеров гетероскедастичности. Ознакомление с традиционном методом наименьших квадратов для многомерной регрессии. Рассмотрение критических значений критерия Стьюдента.
курсовая работа, добавлен 26.09.2017Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.
контрольная работа, добавлен 21.12.2013Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.
контрольная работа, добавлен 10.11.2012Эконометрика - базовая дисциплина экономического образования, ее основные составляющие. Сущности эконометрической модели, шесть этапов процесса моделирования. Зависимости между экономическими явлениями. Тип статистических данных для построения модели.
реферат, добавлен 25.04.2015Предмет и методы эконометрики. Абстрактные модели рыночной экономики. Модели частотного анализа. Коэффициенты корреляции рангов Спирмена, Кендалла, коэффициент Фехнера. Корреляционно-регрессионный анализ. Использование пакетов прикладных программ.
контрольная работа, добавлен 14.12.2011Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Прогнозирование численности населения с помощью методов скользящей средней, наименьших квадратов и экспоненциального сглаживания. Построение графика потребления электроэнергии, определения сезонных колебаний и поквартальный прогноз объема потребления.
задача, добавлен 30.12.2010Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Моделирование времени выполнения заказа клиента методом Монте-Карло, применение законов распределения. АВС-анализ прибыльности товаров, определение вероятности отказа в поставке товара клиенту методами схемной надёжности, суть метода наименьших квадратов.
реферат, добавлен 05.12.2016- 74. Эконометрика
Описание основных задач эконометрики и методов, применяемых для их решения. Парный и множественный регрессионный анализ. Определение системы эконометрических уравнений. Использование информационных технологий при проведении эконометрических исследований.
учебное пособие, добавлен 22.01.2017 Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.
контрольная работа, добавлен 24.11.2014