Інтерполяційні формули Ньютона
Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.
Подобные документы
- 26. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 - 27. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Побудова апарату некласичних мінорант Ньютона функцій однієї дійсної змінної, заданих таблично. Використання цього апарату для оцінки точності наближення функцій некласичними мінорантами Ньютона. Основні властивості міноранти Ньютона та її діаграми.
статья, добавлен 30.01.2017Методика отримання оцінки норми похідної монотонної раціональної функції. Характеристика специфічних особливостей та розрахунок нормуючого множника узагальненого ядра Джексона. Метод побудови квадратурних формул на сфері з "малою" кiлькiстю точок.
автореферат, добавлен 20.07.2015Визначення поняття та видів арифметичної прогресії. Вивчення її властивостей. Наведення формули n-го члена арифметичної прогресії та формули суми перших n членів арифметичної прогресії. Знаходження різниці наступного та попереднього членів послідовності.
презентация, добавлен 19.04.2015Характеристика прикладів числових множин. Особливості застосування похідної для доведення рівностей та нерівностей. Етапи побудови графіка функцій. Аналіз формул Ньютона-Лейбніца. Розгляд основних понять теорії ймовірностей та елементів комбінаторики.
книга, добавлен 16.10.2012Вивчення методу інтерполяції сплайнами. Складання програми мовою програмування Borland C++ 4.5. Основні поняття теорії інтерполяції. Геометрична задача інтерполяції для функції однієї змінної. Інтерполяційна формула Лагранжа. Квадратичний сплайн.
курсовая работа, добавлен 22.11.2016Поняття числової функції. Властивості і графіки основних видів функцій. Тригонометричні функції кута і числового аргументу. Формули додавання та їх наслідки. Метод математичної індукції. Знаходження раціональних коренів многочлена з цілими коефіцієнтами.
учебное пособие, добавлен 16.07.2017Мішана частинна похідної. Лінія рівня як множина точок (х, у) площини 0ху, у яких функція набуває одного й того ж значення. Точки розриву та їх порушення в умовах неперервності функції. Частинні похідні першого порядку. Правила і формули диференціювання.
контрольная работа, добавлен 24.03.2015- 35. Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
лабораторная работа, добавлен 02.10.2013 Радіанне вимірювання кутів, формули переходу від градусної до радіанної міри. Поняття синуса, косинуса і котангенса. Тригонометричні функції числового аргументу, визначення кутів з прямокутного трикутника. Співвідношення між тригонометричними функціями.
презентация, добавлен 04.12.2016Рассмотрение определения монотонных и немонотонных последовательностей. Использование формулы бинома Ньютона в расчете предела числа е. Подпоследовательности и их свойства. Изучение доказательства теоремы Больцано-Вейерштрасса в математическом анализе.
презентация, добавлен 16.10.2014Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
доклад, добавлен 02.11.2014Алгебри бульових виразів і функцій, носії та сигнатури операцій, що їх визначають. Залежність породження різних формул від виду множини функціональних символів. Суттєва залежність функції від її змінних. Еквівалентні та канонічні формули і закони.
лекция, добавлен 19.11.2009Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Постановка задачі інтерполяції функції. Інтерполяційний многочлен у формулі Лагранжа. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле. Аналіз модифікованого алгоритму Течера-Тьюкі на предмет його використання в обчислювальних задачах.
практическая работа, добавлен 16.11.2009Класичні та сучасні різницеві методи інтерполяції. Розробка теоретичних засад теорії інтерполяції різницевими методами функції трьох змінних. Аналоги математичних моделей різницевих методів інтерполяції. Різницеві методи для тривимірної функції.
автореферат, добавлен 30.07.2015Вирішення задачі математичного програмування з послабленими обмеженнями. Знаходження оптимуму функції цілі, застосування нумерації до дискретної оптимізації. Характеристика методу накладання цілочислової сітки. Формули визначення координат точки.
статья, добавлен 13.09.2016- 44. Комплексні числа
Виникнення раціональних та негативних чисел. Проблеми рішень квадратних рівнянь. Визначення, математичні дії та оцінка справедливості рівностей для комплексних чисел. Тригонометричні, гіперболічні та логарифмічні функції. Доведення формули Ейлера.
лекция, добавлен 26.01.2014 Формула Валліса як перше бачення числа Пі у вигляді границі легко обчислюваної раціональної варіанти. Особливості оцінки величини факторіалу при великих значеннях за допомогою формули Стірлінга. Основні методики розрахунку рекурентних інтегралів.
курсовая работа, добавлен 15.06.2017Оцінка значення аналізу залишкових похибок з точки зору фішерівської теорії оцінок, що дає змогу окреслити зони сингулярності вагової функції під час застосування методу найменших квадратів. Отримання ефективних оцінок за методом найменших квадратів.
статья, добавлен 24.02.2016- 47. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
презентация, добавлен 11.05.2016 Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014- 49. Теорема Вієта
Розвиток обчислювальних навичок та логічного мислення учнів на уроках математики. Застосування формули коренів квадратного рівняння. Приклади розв'язування типових вправ з використанням теореми Вієта. Розрахунок дискримінанти квадратного рівняння.
разработка урока, добавлен 09.10.2018 Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013