Пьер де Ферма

Ферма - последний математик-алхимик, гениальный компилятор, один из четырех титанов математики нового времени. Трактат "О сравнении кривых линий прямыми". Ферма нашел достаточные условия существования максимумов, научился определять точки перегиба.

Подобные документы

  • Характеристика свойств наибольшего общего делителя. Основные варианты разложения показателя степени на сомножители. Особенности определения коэффициентов полинома при помощи биномиальных выражений. Исследование ключевых признаков "примитивных" чисел.

    статья, добавлен 03.03.2018

  • Доказательство теоремы о том, что число регулярных простых чисел бесконечно. Сравнение Куммера, теорема Штаудта. Принцип бесконечного понижения (спуск). Доказательство теоремы о произведении третьего простого натурального нечетного числа на дробное.

    статья, добавлен 03.03.2018

  • Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.

    методичка, добавлен 25.11.2013

  • Способы образования кривых линий как траекторий последовательных положений движущейся точки. Проведение касательных и нормалей к плоским кривым. Кривые линии, построенные при помощи центроид - рулетты, их виды. Примеры замечательных плоских кривых линий.

    контрольная работа, добавлен 21.02.2013

  • Проблема нахождения необходимых и достаточных условий в свойствах геометрических фигур, которая является актуальной в работе учителя математики. Методические рекомендации для преподавания темы "Необходимые и достаточные условия" из курса "Геометрия".

    статья, добавлен 27.02.2019

  • Числовые равенства с взаимно простыми основаниями степеней и натуральным показателем степени n > 1. Условия верности таких числовых равенств. Расчет уравнений, при показателе степени равном количеству слагаемых равенств при помощи теоремы Ферма.

    научная работа, добавлен 10.02.2015

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.

    реферат, добавлен 26.06.2013

  • Теория делимости, основанная на единственности разложения натурального числа на простые множители (основная теорема арифметики). Доказательство Э. Уайлсом гипотезы Шимуры-Таниямы. Главные особенности применения матриц и теории групп, результаты.

    статья, добавлен 03.03.2018

  • Характеристика алгебраических методов в геометрии, история возникновения терминов "ордината", "координата", их первооткрыватели. Аналитическая геометрия Ферма и Декарта, их отличительные черты. Исследование оптических овалов на биполярных координатах.

    реферат, добавлен 17.09.2014

  • Сущность теории формирования образов в матричной форме с помощью теоремы Габора. Анализ формульного выражения волнового уравнения. Исследование фазового пространства в геометрической оптике по принципу Ферма. Определение координат и индекса луча.

    статья, добавлен 18.10.2013

  • Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.

    статья, добавлен 11.07.2015

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

  • Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.

    учебное пособие, добавлен 12.09.2013

  • Жозеф Луи Лагранж - французский математик, астроном и механик итальянского происхождения. Жизненный путь и труды. Классический трактат "Аналитическая механика". Метод вариации произвольных констант при решении линейных дифференциальных уравнений.

    реферат, добавлен 10.12.2014

  • Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.

    учебное пособие, добавлен 19.04.2013

  • Решение неопределенных уравнений только в целых числах. Применение в современной математике направления, занимающегося исследованиями диофантовых уравнений, поиском способов их решений. Изобретение Ферма, его интерес к поиску целочисленных решений.

    статья, добавлен 12.04.2019

  • Ферма и Паскаль - основатели математической теории вероятностей. Изобретение Паскалем арифметической машины. Введение Гюйгенсом понятия математического ожидания. Применение теории вероятностей в различных областях. Зарождение "статистической физики".

    статья, добавлен 25.07.2018

  • Изучение возможности решения уравнения гипотезы Била через рассмотрения таблицы степеней отобранных автором чисел. Установление закономерностей их повторения в рамках обобщение теоремы Ферма. Исследование свойства уравнения, не оговоренного математиком.

    статья, добавлен 03.03.2018

  • Общая характеристика большой теоремы Ферма. Рассмотрение числовых равенств с целыми, положительными, взаимно простыми основаниями и натуральным показателем степени n > 1. Знакомство с операциями по разделению уравнений с каждым из уравнений системы.

    реферат, добавлен 22.04.2020

  • Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

    конспект урока, добавлен 03.02.2018

  • Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.

    реферат, добавлен 11.03.2014

  • Давид Гильберт - один из истинно великих математиков своего времени; его труды оказали глубокое влияние на развитие математических наук в первой половине двадцатого века. Оригинальное сочетание абстрактной точки зрения и конкретного традиционного языка.

    реферат, добавлен 05.03.2009

  • А.Н. Колмогоров как один из создателей теории случайных процессов. История появления концепции случайности как алгоритмической сложности. Марковские цепи, их открытие и главные особенности применения. Вклад Готфрида Лейбница в развитие математики.

    доклад, добавлен 10.01.2012

  • Алгебраїчні методи в геометрії, особливості та принципи їх реалізації, історія застосування. Загальна характеристика та відмінні особливості аналітичної геометрії Ферма та Декарта. Сторінка першого видання "Геометрії" Р. Декарта (1637), її зміст.

    реферат, добавлен 27.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.