Классический метод вариационного исчисления
Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
Подобные документы
Знаходження функції на основі експериментальних даних за методом найменших квадратів для параболічної залежності. Пошук екстремуму функції за умови, що аргументи задовольняють умові зв’язку. Функція Лагранжа. Нормальна система методу найменших квадратів.
контрольная работа, добавлен 12.11.2017Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Нахождение точного решения задачи о минимуме заданного функционала. Решение уравнения Эйлера. Нахождение приближенных решений (итераций) задачи о минимуме по методу Ритца при определенном выборе системы координатных функций. Построение графиков функций.
курсовая работа, добавлен 22.12.2015Классификация задач нелинейного программирования и методы их решения. Графический метод решения задач нелинейного программирования для функций двух переменных. Решение задач нелинейного программирования методом Лагранжа и в программной среде Mathcad.
курсовая работа, добавлен 13.10.2016Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Показано, как можно сингулярную задачу, решаемую вариационным методом в весовом пространстве, заменить аппроксимирующей задачей, не имеющей сингулярности. Решение задачи о минимуме функционала. Краевая задача для сингулярного дифференциального уравнения.
статья, добавлен 01.02.2019Результаты формирования теоретических основ использования модифицированных функций Лагранжа, развитых в численных методах оптимизации, для учета дополнительных голономных связей в механических системах. Параметры модифицированных функций Лагранжа.
статья, добавлен 26.04.2019Рассмотрение алгоритма решения задачи с дифференцируемой целевой функцией методом замены переменных и методом множителей Лагранжа. Определение особенностей постановки задачи условной минимизации с ограничениями-равенствами ограничениями-неравенствами.
презентация, добавлен 09.07.2015- 34. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
курсовая работа, добавлен 10.11.2010 Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
дипломная работа, добавлен 16.01.2014Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Знакомство с основными особенностями непрерывного оптимального управления в динамических системах. Общая характеристика прикладной теории оптимального управления. Анализ задачи регулирования линейной динамической системы с квадратичным функционалом.
контрольная работа, добавлен 26.03.2020Исследование двухкритериальной задачи стохастического оптимального управления дивидендной политикой страховой компании с критериями доходности и риска. Аппроксимация Парето-оптимального множества барьерно-пропорциональными стратегиями управления.
статья, добавлен 19.02.2016Распределение вариационного ряда. Определение параметров распределения, среднеквадратичного отклонения и теоретических частот. Критерии согласия Ястремского, показатели надежности. Вероятность безотказной работы. Частота и интенсивность отказов.
курсовая работа, добавлен 23.03.2016Моделирование выборки из равномерного закона распределения. Построение вариационного ряда выборки, гистограммы и полигона частот, эмпирической функции распределения. Расчет выборочного среднего и выборочной дисперсии. Нахождение выборочной моды и медианы.
контрольная работа, добавлен 22.11.2012Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.
лекция, добавлен 06.09.2017Общая и формальная постановка одношаговой задачи оптимального инвестирования в случае, когда разрешены "короткие продажи". Постановка многошаговой задачи оптимизации инвестиционного портфеля с дискретным временем как задачи динамического программирования.
курсовая работа, добавлен 05.08.2018Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.
статья, добавлен 31.07.2018Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.
контрольная работа, добавлен 20.01.2015Приведение определителя к треугольному виду с помощью элементарных преобразований над строками или столбцами. Решение системы методом обратной матрицы и методом Гаусса. Приведение квадратичной формы к каноническому виду методом Лагранжа, переход к базису.
контрольная работа, добавлен 26.01.2015- 50. Задача Фараона
Математический метод решения задачи Фараона. Иррациональное алгебраическое число, которое является корнем уравнения восьмой степени, как ответ задачи. Сведение задачи к нахождению положительного корня уравнения. Суть геометрического решения задачи.
задача, добавлен 27.03.2013