Моделирование временного тренда среднегодовой численности занятого населения

Дисперсионный анализ для линейной регрессии. Остаточная и общая вариации. Оценки дисперсий коэффициентов регрессии. Функция эластичности. Доверительные интервалы для оцененных параметров. Критическое значение статистики Стьюдента. Критерий Фишера.

Подобные документы

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии, дисперсии и среднеквадратического отклонения. Разработка матрицы парных коэффициентов.

    задача, добавлен 13.03.2014

  • Определение вероятности получения компанией контракта. Ожидаемая чистая прибыль для продавца. Исправленные выборочные дисперсии. Проверка гипотезы о равенстве средних. Критическое значение при вероятности и степени свободы. Критерий Стьюдента и Фишера.

    контрольная работа, добавлен 22.04.2014

  • Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.

    контрольная работа, добавлен 10.06.2015

  • Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.

    контрольная работа, добавлен 23.11.2016

  • Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.

    контрольная работа, добавлен 08.02.2022

  • Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии. Оценка средней ошибки аппроксимации качества уравнений. Оценка статистической надежности результатов моделирования.

    контрольная работа, добавлен 16.05.2016

  • Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

    контрольная работа, добавлен 10.07.2016

  • Характеристика основных показателей качества параметров регрессии. Порядок работы при проверке значимости коэффициента. Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Аспекты предсказания среднего значения зависимой переменной.

    курс лекций, добавлен 11.06.2014

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.

    контрольная работа, добавлен 04.05.2011

  • Определение и характеристика сущности парной регрессии и корреляции. Изучение примеров гетероскедастичности. Ознакомление с традиционном методом наименьших квадратов для многомерной регрессии. Рассмотрение критических значений критерия Стьюдента.

    курсовая работа, добавлен 26.09.2017

  • Расчет и составление матрицы парных коэффициентов корреляции и индекса детерминации. Вычисление дисперсионного отношения Фишера. Построение экономической модели влияния годового фонда заработной платы и мигрантов на численность безработных в регионе.

    контрольная работа, добавлен 10.01.2017

  • Математическое определение тарифов страхования от пожаров в зависимости от нанесенного ущерба и расстояния до пожарной станции. Расчет частных коэффициентов эластичности и коэффициентов корреляции при определении цен и дивидендов по обыкновенным акциям.

    контрольная работа, добавлен 07.11.2009

  • Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.

    лабораторная работа, добавлен 02.01.2022

  • Линейная модель парной корреляции, степенная модель парной регрессии, показательная и гиперболическая функция. Индекс корреляции, средняя относительная ошибка, коэффициент детерминации, F-критерий Фишера. Прогнозное значение результативного показателя.

    контрольная работа, добавлен 19.04.2013

  • Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.

    контрольная работа, добавлен 01.06.2020

  • Понятие фиктивных переменных. Особенности их применения для функции спроса. Построение уравнения регрессии. Фиктивные переменные сдвига и взаимодействия, а также во временных рядах, в моделях с сезонностью. Моделирование линейного временного тренда.

    контрольная работа, добавлен 11.12.2013

  • Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.

    контрольная работа, добавлен 16.04.2012

  • Линейный коэффициент парной корреляции и средняя ошибка аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.

    контрольная работа, добавлен 16.03.2015

  • Приведение геометрической иллюстрации простой и ортогональной регрессии в пространстве переменных и наблюдений. Выведение формулы для дисперсии ошибки среднего и формулы оценки Вальда углового коэффициента регрессии. Оценка параметров систем уравнений.

    учебное пособие, добавлен 28.12.2013

  • Вычисление параметров уравнений линейной регрессии. Главная особенность интерпретации рассчитанных характеристик. Основной анализ регулярной модели зависимости выручки предприятия от капиталовложений. Построение матрицы коэффициентов парной корреляции.

    контрольная работа, добавлен 20.02.2015

  • Построение доверительного интервала для коэффициента регрессии модели. Оценка качества модели, ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса на товар в зависимости от его цены, коэффициент эластичности.

    контрольная работа, добавлен 31.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.