Построение и анализ модели множественной регрессии
Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
Подобные документы
Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.
контрольная работа, добавлен 09.06.2015Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.
контрольная работа, добавлен 18.12.2014Построение поля корреляции, уравнения линейной и степенной парной регрессии. Расчет значения спроса, его квадратичного отклонения и коэффициентов автокорреляции. Выполнение сглаживания временного ряда методом скользящих средних с интервалом сглаживания.
контрольная работа, добавлен 30.12.2010Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.
лекция, добавлен 15.06.2014Исследование функции среднеквадратической ошибки прогноза для ридж-регрессии на экстремум в зависимости от параметра регуляризации. Использование локального минимума СКОП для поиска оптимального параметра управления при мультиколлинеарности факторов.
статья, добавлен 29.08.2016Статистическое описание и выборочные характеристики двумерного случайного вектора. Линейная регрессия, задачи линейного регрессионного анализа. Однофакторный дисперсионный анализ. Границы доверительных интервалов для параметров линейной регрессии.
курсовая работа, добавлен 28.10.2017Составление сводной таблицы вычислений, выбор лучшей модели, интерпретация рассчитанных характеристик и индекса корреляции. Рассчет прогнозных значений результативного признака, при увеличении прогнозного значения фактора относительно среднего уровня.
задача, добавлен 06.08.2010Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.
лабораторная работа, добавлен 01.11.2023Типичная ошибка прогнозирования: стандартная ошибка предсказания. Объясненный процент вариации. Статистический вывод в случае множественной регрессии. Модель множественной регрессий для генеральной совокупности. Критические значения для уровня значимости.
реферат, добавлен 29.09.2013Статистическое описание и выборочные характеристики двумерного случайного вектора. Предмет линейного регрессионного анализа. Особенности однофакторного дисперсионного анализа. Уравнение выборочной линейной регрессии. Выборочное значение статистики.
курсовая работа, добавлен 22.10.2017Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.
контрольная работа, добавлен 29.12.2011Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.
статья, добавлен 24.02.2019Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
статья, добавлен 03.11.2015Ознакомление с условиями поиска полиномиальной регрессионной математической модели. Вычисления для линейной РОФМ. Формульное определение критериев выделяющегося максимального значения. Промежуточные показатели при расчетах коэффициентов регрессии.
методичка, добавлен 08.06.2015F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Задачи корреляционно-регрессионного анализа. Корреляция случайных величин. Линейная регрессия, описание объекта, факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций. Построение уравнения регрессии, смысл модели.
реферат, добавлен 20.03.2010Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Ошибки коэффициентов уравнений регрессии, анализ остаточной дисперсии. Взаимокоррелирующие аргументы, выбор аргументов в уравнении регрессии при их взаимной корреляции в лесном хозяйстве. Зависимость высоты дерева от качества условий местопроизрастания.
реферат, добавлен 29.03.2018Построение диаграммы рассеивания с нанесенной на нее сеткой для группировки данных. Проверка заданной гипотезы об отсутствии линейной статистической связи между компонентами. Получение интервальной оценки для истинного значения коэффициента корреляции.
курсовая работа, добавлен 05.11.2011Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.
презентация, добавлен 05.06.2012Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.
лекция, добавлен 25.04.2015