Решение нелинейных уравнений
Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.
Подобные документы
Матричная запись системы данных. Методы простых и покоординатных итераций. Типы их сходимости. Оценки итерационного процесса. Алгоритм Ньютона и его модификация: двухшаговый, разностный (дискретный) и с последовательной аппроксимацией обратных матриц.
презентация, добавлен 30.10.2013Решение задачи о нелинейном колебании эллиптического маятника методом частичной дискретизации нелинейных уравнений. Сравнительный анализ полученных результатов с решением задачи соответствующего малым колебаниям, описывающейся системой линейных уравнений.
статья, добавлен 21.06.2018Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.
статья, добавлен 04.05.2016Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.
презентация, добавлен 27.05.2014Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.
курсовая работа, добавлен 14.03.2015Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.
контрольная работа, добавлен 17.05.2019Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Разные типы решений задачи Коши. Применение математической модели недемпфированного нелинейного осциллятора для анализа свойств численных методов. Решение уравнения Дуффинга. Локальная и глобальная погрешности при решении задач гармонического осциллятора.
статья, добавлен 06.11.2018Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
статья, добавлен 26.04.2019Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.
курсовая работа, добавлен 25.01.2017Сущность и содержание исследуемого метода как процедуры эвристического типа, предваряющей использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума. Алгоритм Свенна, его этапы и назначение. Метод деления пополам.
контрольная работа, добавлен 05.07.2014Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.
реферат, добавлен 14.12.2010- 38. Численные методы
Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.
контрольная работа, добавлен 20.05.2013 Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
методичка, добавлен 03.03.2012Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.
дипломная работа, добавлен 01.10.2017Приближенное решение уравнения методом методом деления пополам, методом Ньютона и методом Симпсона. Особенности нахождения выборочного среднего квадратического отклонения. Сущность выборочного коэффициента корреляции. Этапы проверки нулевой гипотезы.
контрольная работа, добавлен 06.10.2011Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.
реферат, добавлен 12.12.2013Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.
курсовая работа, добавлен 18.10.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Теорема с доказательством решения системы линейных алгебраических уравнений за конечное число итераций со стационарной матрицей. Конечный итерационный процесс в системе с коэффициентами. Матрицы алгебраической и итерационной систем для конечных процессов.
статья, добавлен 05.08.2020Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013