Вычисление интегралов методом Монте-Карло

Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

Подобные документы

  • Для заданной выборки равномерного распределения построение ее вариационного ряда, эмпирической функции, гистограммы и полигона частот. Расчет выборочного среднего, дисперсии, моды и медианы. Оценка методом Монте-Карло интеграла с заданной ошибкой.

    контрольная работа, добавлен 10.11.2017

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Число е - удивительный математический элемент, свойства которого можно наблюдать в решениях определённых задач и окружающем пространстве. Характеристика основных формул, применяющихся для определения данной константы. Сущность метода Монте-Карло.

    творческая работа, добавлен 26.04.2019

  • Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.

    курсовая работа, добавлен 02.11.2010

  • Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.

    реферат, добавлен 12.03.2010

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Изучение свойств определенного интеграла. Описание точных методов их вычисления по формулам Ньютона-Лейбница, интегрирования по частям и путем замены переменной в определенном интеграле. Описание приближенных методов вычисления определённых интегралов.

    реферат, добавлен 01.12.2016

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.

    реферат, добавлен 05.05.2016

  • Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.

    реферат, добавлен 02.09.2013

  • Объективные и субъективные методы определения вероятности. Теория использования математической статистики, Байесовских сетей для вычисления вероятности событий. Методы экспертного анализа риска, частичного баланса, имитационные, моделирования Монте-Карло.

    статья, добавлен 24.05.2018

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.

    презентация, добавлен 17.09.2013

  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа, добавлен 30.10.2010

  • Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.

    учебное пособие, добавлен 13.09.2015

  • Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.

    методичка, добавлен 27.08.2017

  • Разработка приближенных методов вычисления определенных интегралов. Классические методы численного интегрирования по квадратурным формулам - наиболее распространенные методы вычисления одномерных определенных интегралов. Сущность метода прямоугольников.

    курсовая работа, добавлен 20.05.2013

  • Планируемый ЛП-поиск как алгоритм, объединяющий стохастические модели, свойственные методу Монте-Карло и планирование вычислительного эксперимента. Методика проведения однофакторного дисперсионного анализа по всем параметрам для каждого критерия.

    статья, добавлен 25.08.2020

  • Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.

    курсовая работа, добавлен 15.03.2013

  • Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.

    презентация, добавлен 17.09.2013

  • Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.

    курс лекций, добавлен 23.10.2013

  • Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.

    курсовая работа, добавлен 08.02.2016

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.

    презентация, добавлен 17.09.2013

  • Характеристика основных различий между номинальными и реальными уровнями значимости на примере непараметрических критериев проверки однородности двух независимых выборок. Проведение исследования мощности статистических критериев методом Монте-Карло.

    статья, добавлен 22.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.