Построение и анализ множественной регрессии
Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
Подобные документы
Определение зависимости среднедушевого потребления продукта от размера дохода и индекса цен. Построение матрицы парных коэффициентов корреляции. Оценка уравнения регрессии с помощью критериев Фишера и Стьюдента. Прогнозирование эластичности спроса.
контрольная работа, добавлен 01.11.2015Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
контрольная работа, добавлен 14.04.2021- 29. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Формулировка и доказательство теоремы Гаусса-Маркова. Анализ точности определения оценок коэффициентов регрессии. Понятие коэффициента детерминации. Построение доверительных интервалов по линейному уравнению регрессии и расчёт коэффициента вариации.
контрольная работа, добавлен 28.07.2013Параметры линейной, степенной, показательной функций и равносторонней гиперболы. Оценка каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера. Линейный коэффициент парной корреляции и средняя ошибка аппроксимации, параметры регрессии.
контрольная работа, добавлен 05.10.2011Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии. Определение коэффициентов автокорреляции уровней ряда первого и второго порядка.
контрольная работа, добавлен 16.04.2020Изучение влияния факторов на производительность труда. Построение уравнения регрессии и распределения. Определение значимости коэффициентов парной корреляции. Проверка случайности колебаний уровней остаточной последовательности. Оценка точности модели.
лабораторная работа, добавлен 04.10.2016Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.
реферат, добавлен 25.04.2015Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.
контрольная работа, добавлен 21.02.2011Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.
контрольная работа, добавлен 29.10.2012Особенности поиска параметров уравнения линейной регрессии. Основы определения средней относительной ошибки аппроксимации. Графическое построение фактических и модельных значений точки прогноза. Основные аспекты вычисления коэффициента детерминации.
контрольная работа, добавлен 16.04.2015Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.
контрольная работа, добавлен 16.04.2012Модель парной регрессии. Оценка надежности парной регрессии и корреляции. Интервальная оценка для коэффициента корреляции. Доверительные интервалы для зависимой переменной. Анализ коррелированности отклонений. Проверка наличия гетероскедастичности.
курсовая работа, добавлен 21.02.2014Уравнение зависимости объема предложения блага от цены этого блага и зарплаты сотрудников фирмы. Линейная модель множественной регрессии данных, расчёт автокорреляции остатков с помощью теста Дарбина-Уотсона. Уравнение регрессии с фиктивными переменными.
контрольная работа, добавлен 27.04.2013Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.
курсовая работа, добавлен 04.01.2018Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Расчет оценки параметров уравнения парной линейной регрессии. Оценка тесноты связи между признаками с помощью выборочного коэффициента корреляции. Построение доверительного интервала для коэффициента регрессии. Осуществление дисперсионного анализа.
контрольная работа, добавлен 16.03.2017Оценка и расчёт значимости коэффициентов уравнения множественной регрессии и корреляции с помощью f-критерия Стьюдента и t-статистики Стьюдента: интерпретация параметров, коэффициентов эластичности и стандартизированных бетта-коэффициентов уравнения.
реферат, добавлен 08.06.2012Решение задачи с помощью пакета Excel. Параметры уравнения линейной зависимости. Таблица дисперсионного анализа, коэффициенты детерминации. Средняя ошибка аппроксимации. Оценка значимости коэффициента корреляции и регрессии с помощью критерия Стьюдента.
контрольная работа, добавлен 11.10.2012Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.
контрольная работа, добавлен 07.10.2015Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.
курсовая работа, добавлен 14.12.2015