Восстановление модели динамической нелинейной системы по порождаемому ей временному ряду
Характер поведения динамической системы, описываемой нестационарным временным рядом. Метод "фазового портрета". Восстановление в заданном классе системы дифференциальных или разностных уравнений на базе скалярного временного ряда наблюдаемого процесса.
Подобные документы
Стохастическая версия W-метода, который восходит к работам Азбелева. Теоремы, которые можно рассматривать как фундамент общей схемы анализа устойчивости линейных стохастических функционально-дифференциальных уравнений. Пример скалярного уравнения Ито.
статья, добавлен 26.04.2019Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
статья, добавлен 15.01.2019Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
курсовая работа, добавлен 07.11.2020Матричная запись линейной системы. Матричный метод решений. Решение системы по правилу Крамера. Формулировка теоремы Кронекера-Капелли, алгоритм решения системы. Метод Гаусса или метод исключения неизвестных, элементарные преобразования над строками.
контрольная работа, добавлен 02.04.2012Анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Рассмотрение системы сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Области притяжения вырожденной системы.
статья, добавлен 11.11.2018Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Последовательность действий при использовании уравнений Лагранжа II рода для решения задач о движении голономных систем. Описание модели наземного артиллерийского орудия. Расчет кинетической энергии системы. Виртуальная работа сил, действующих на нее.
контрольная работа, добавлен 13.05.2014Суть однозначной разрешимости в пространстве ограниченных на всей оси функций для одной системы линейных дифференциальных уравнений с неограниченными коэффициентами. Выявленные условий с помощью связи между "старшими и младшими" коэффициентами системы.
статья, добавлен 31.08.2020Анализ полной наблюдаемости нестационарной возмущенной дифференциально-алгебраической системы. Метод каскадного расщепления исходных пространств на подпространства. Формула для нахождения вектора состояний системы. Связь между входной/выходной функциями.
статья, добавлен 29.04.2017- 37. Оценка вероятностей реализации пятиэлементного сечения для стратегии параллельного восстановления
Анализ изменения поведения системы с помощью графа состояний. Решение системы дифференциальных уравнений Колмогорова-Чепмена. Расчет финальных вероятностей состояний системы и влияния интенсивностей восстановления элементов на ее работоспособность.
лабораторная работа, добавлен 20.05.2015 Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Применение геометрических образов, полученных с помощью программных средств. Решение дифференциальных уравнений. Понятие автономной системы и фазового пространства. Фазовый портрет линейной системы на плоскости. Построение фазовых портретов в Delphi.
учебное пособие, добавлен 08.09.2015Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
контрольная работа, добавлен 26.02.2012Разработка математической модели гидромеханической схемы методом прямой аналогии. Составление схемы гидромеханической системы. Составление системы дифференциальных уравнений по эквивалентной схеме. Определение основных параметров математической модели.
курсовая работа, добавлен 11.11.2017Особенности системы массового обслуживания. Типы ограничений, наложенных на ожидание. Получение системы бесконечного числа дифференциальных уравнений для системы. Формулы Эрланга для вероятностей состояний системы при установившемся режиме обслуживания.
контрольная работа, добавлен 10.06.2015История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Характеристика математической модели динамики показателя оперативности арбитражных судов России в виде задачи Коши для системы разностных и дифференциальных уравнений. Анализ основных закономерностей динамики показателя оперативности арбитражных судов.
статья, добавлен 28.04.2017Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.
статья, добавлен 30.10.2016Рассмотрение особенностей численного метода оценки параметров нелинейной математической модели, описывающей изменения численности населения Российской Федерации. Определение начального приближения вектора оценок коэффициентов разностного уравнения.
статья, добавлен 28.01.2021