Геометрия в архитектуре
Зарождение и развитие архитектуры. Геометрия в практической деятельности человека. Храм в Дейр Эль–Бахри, геометрия при строительстве метро, здания с круглым основанием. Проверка правильности угольника и линейки. Расстояние между недоступными точками.
Подобные документы
Вклад Софьи Ковалевской в развитие математического анализа, механики и астрономии. Создание Лузиным дескриптивной теории функций. Роль Колмогорова в создании системы аксиом современной теории вероятностей. Создание аналитической геометрии П. Ферма.
презентация, добавлен 05.10.2015Методы начертательной геометрии как теоретическая база для решения задач технического черчения. Развитие пространственного воображения и навыков правильного логического мышления. Понятие о методах проецирования. Способы задания плоскости на чертеже.
курсовая работа, добавлен 21.09.2017Сравнение отрезков и углов, их измерение. Первый и второй признак равенства треугольников. Медианы, биссектрисы и высоты треугольника. Признаки параллельности двух прямых. Сумма углов треугольника. Соотношение между сторонами и углами треугольника.
учебное пособие, добавлен 22.01.2012Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).
реферат, добавлен 27.01.2016Изучение жизненного пути и научной деятельности Лобачевского Николая Ивановича - великого математика, одного из творцов неевклидовой геометрии. Юношеские и студенческие годы. Педагогическая, административная и исследовательская деятельность ученого.
реферат, добавлен 12.01.2011Формирование у обучающихся навыков решения задач по геометрии на построение сечений. Развитие у учащихся пространственного воображения, графической культуры. Суть комбинированного метода построения сечений многогранников, пирамиды и параллелепипеда.
разработка урока, добавлен 25.09.2013Реконструкция картины возникновения теоретической математики. Отличие древнегреческой дедуктивной геометрии от системы вычислений на Востоке. Обобщение способов установления зависимости между получаемыми результатами и унификация правил решения задач.
автореферат, добавлен 25.02.2018Уравнение высоты треугольника, тангенс угла между диагоналями параллелограмма. Уравнение плоскости, проходящей через заданную точку параллельно плоскости. Канонические уравнения прямой. Координаты точки пересечения прямой. Геометрическое место точек.
контрольная работа, добавлен 14.03.2016Развитие новых идей и методов в математике. Определения, изложенные в "Началах" Евклида. Аксиома о свойствах прямоугольного треугольника. Критика евклидовского обоснования геометрии. Основоположники неевклидовой геометрии. Идеи Лобачевского и Бояй.
реферат, добавлен 20.11.2010- 110. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014 Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.
презентация, добавлен 28.11.2014Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.
реферат, добавлен 11.09.2010Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.
реферат, добавлен 30.10.2010Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.
курс лекций, добавлен 21.04.2015Основные этапы развития математики. Особенности математики в различных странах. Значимость математики в нынешнее время. Возникновение арифметики и геометрии. Формирование понятия геометрической фигуры и числа. Крупное количество счета.
презентация, добавлен 09.11.2016Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.
реферат, добавлен 29.04.2018Сущность центрального и параллельного проецирования, метод ортогональных проекций. Способы задания плоскости на чертеже. Параллельность и перпендикулярность прямых и плоскостей. Аксонометрические оси в прямоугольной изометрии. Свойства многогранников.
учебное пособие, добавлен 25.11.2013- 118. Высшая математика
Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.
учебное пособие, добавлен 09.12.2016 Понятие об операции проецирования. Задание плоскости на комплексном чертеже. Взаимное положение прямых и плоскостей. Изображение многогранников. Способы преобразования комплексного чертежа. Кривые линии и поверхности. Аксонометрические проекции.
курс лекций, добавлен 15.09.2017Периодизация этапов становления науки изучающей величины, количественные отношения и пространственные формы. История зарождения неевклидовой геометрии. Действия с комплексными числами. Фундаментальные представления об алгебре матриц и интегралов.
курс лекций, добавлен 26.01.2014- 121. Инженерная графика
Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.
учебное пособие, добавлен 17.12.2014 Использование характеристик прямых, плоскостей и векторов при расчете параметров геометрических фигур. Аффинные преобразования, инвариантные точки и прямые. Уравнения биссектрисы и медианы. Асимптоты, эксцентриситет, директрисы, фокальные радиусы.
контрольная работа, добавлен 20.04.2015- 123. Высшая математика
Изучение разделов линейной и векторной алгебры, аналитической геометрии, основ математического анализа и операционного исчисления. Рассмотрение примеров решения двойных, тройных, криволинейных и поверхностных интегралов, дифференциальных уравнений.
учебное пособие, добавлен 12.02.2016 - 124. Применение фракталов
Знакомство с понятием, историей возникновения и исследованиями Бенуа Мандельброта. Представление о фракталах, встречающихся в нашей жизни. Нахождение подтверждения теории фрактальности окружающего мира. Фракталы в математике, геометрии и в реальном мире.
практическая работа, добавлен 12.07.2020 Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.
статья, добавлен 26.04.2017