Статистический анализ внешнеэкономической деятельности РФ

Линейная регрессионная модели. Парная регрессия. Дисперсионный анализ. Эластичность. Изучение качества регрессии Доверительные интервалы для оцененных параметров. Критерий Фишера значимости всей регрессии. Колеблемость признака. Показательная модель.

Подобные документы

  • Построение однофакторного уравнения линейной регрессии зависимости производительности труда рабочего (y) от стажа работы x. Определение коэффициента эластичности. Экономическая интерпретация коэффициента регрессии и коэффициента эластичности труда.

    контрольная работа, добавлен 21.12.2019

  • Нелинейные соотношения между экономическими явлениями, их выражение с помощью нелинейных функций. Характеристика двух классов нелинейных регрессий. Сравнительный анализ моделей, построенных по индексу детерминации и средней ошибке аппроксимации.

    лекция, добавлен 25.04.2015

  • Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.

    курс лекций, добавлен 10.02.2014

  • Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.

    контрольная работа, добавлен 01.06.2020

  • Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

    курсовая работа, добавлен 29.04.2014

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Построение двухфакторной эконометрической модели и анализ показателей тесноты производительности труда работников междугородной и международной телефонной связи. Определение параметров уравнения линейной регрессии. Расчет коэффициентов эластичности.

    задача, добавлен 27.09.2014

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.

    презентация, добавлен 02.10.2011

  • Регрессионное уравнение, эмпирический анализ данных. Выбор коэффициентов регрессионной прямой. Интегральная мера близости. Система нормальных уравнений. Интерпретация уравнения регрессии, среднее изменение результата с изменением фактора на одну единицу.

    презентация, добавлен 12.07.2015

  • Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.

    контрольная работа, добавлен 28.08.2017

  • Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.

    контрольная работа, добавлен 17.04.2014

  • Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.

    контрольная работа, добавлен 19.05.2012

  • Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.

    контрольная работа, добавлен 07.10.2015

  • Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.

    контрольная работа, добавлен 10.06.2015

  • Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.

    курсовая работа, добавлен 04.01.2018

  • Расчет коэффициентов корреляции и детерминации. Оценка уравнения регрессии. Матрица парных коэффициентов корреляции. Частные коэффициенты эластичности. Анализ параметров уравнения регрессии. Проверка гипотез относительно коэффициентов уравнения регрессии.

    контрольная работа, добавлен 22.09.2011

  • Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.

    учебное пособие, добавлен 14.04.2015

  • Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.

    задача, добавлен 14.05.2016

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Построение поля корреляции, расчет параметров уравнения линейной регрессии, оценка тесноты связи. Сравнительная оценка силы связи фактора с результатом. Анализ линейных коэффициентов парной и частной корреляции. Уравнение множественной регрессии.

    контрольная работа, добавлен 30.03.2010

  • Виды регрессии: одномерная и многомерная, линейная и нелинейная, параметрическая и непараметрическая. Корреляционный и дисперсионный анализ. Построение регрессионной модели курса украинской валюты. Построение учебной таблицы межотраслевого баланса.

    курсовая работа, добавлен 25.01.2014

  • Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.

    контрольная работа, добавлен 07.03.2016

  • Осуществление проверки значимости уравнения регрессии на основе критерия Фишера. Изучение множественного коэффициента корреляции и детерминации. Распределение регионов по уровню занятости населения. Расчет дисперсии и среднего квадратического отклонения.

    задача, добавлен 27.12.2017

  • Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.

    контрольная работа, добавлен 23.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.