Проверка существенности факторов и показатели качества регрессии

Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.

Подобные документы

  • Основные элементы эконометрической модели. Спецификация модели парной линейной регрессии. Основные предположения регрессионного анализа. Коэффициенты детерминации и парной корреляции. Проверка статистической значимости в парной линейной регрессии.

    реферат, добавлен 27.12.2016

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Множественные регрессионные модели. Использование множественной регрессии в решении проблем спроса, изучении доходности акций, изучении функции издержек производства, в макроэкономических расчетах. Выбор вида уравнения регрессии как спецификация модели.

    презентация, добавлен 12.07.2015

  • Построение поля корреляции и гипотеза о форме связи. Уравнение линейной регрессии и экономическая интерпретация. Параметры уравнений степенной и гиперболической регрессий. Расчет индекса корреляции и детерминации. Модель регрессии и F-критерий Фишера.

    контрольная работа, добавлен 18.02.2016

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Среднее значения показателя в совокупности. Вариационный анализ статистической совокупности по Показателю. Проверка гипотезы о нормальном характере распределения Показателя, с использованием критерия Пирсона. Построение уравнения парной регрессии.

    контрольная работа, добавлен 04.08.2015

  • Обозначение факторов, влияющих на прибыль. Рассмотрение факторов, влияющих на результативный признак с помощью коэффициентов парной корреляции. Определение и устранение мультиколлинеарности. Оценка значимости факторов по коэффициенту эластичности.

    курсовая работа, добавлен 14.10.2024

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Выражение нелинейных соотношений между экономическими явлениями с помощью соответствующих нелинейных функций. Применение степенной функции в определении соотношений между явлениями. Спецификация модели. Отбор факторов построения множественной регрессии.

    контрольная работа, добавлен 06.11.2014

  • Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.

    курсовая работа, добавлен 04.01.2018

  • Линейные, нелинейные парные функции регрессии. Оценка тесноты связи дохода от железнодорожных перевозок и пассажирооборота с помощью показателей корреляции, детерминации, среднего коэффициента эластичности. Оценка ошибки аппроксимации уравнений регрессии.

    курсовая работа, добавлен 29.10.2015

  • Запись уравнений множественной корреляции. Проведение нормировки всех значений случайных величин по формулам. Запись уравнения регрессии в стандартном масштабе. Получение зависимости температуры нефти после печи ТХУ от количества сжигаемого газа.

    контрольная работа, добавлен 12.11.2014

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Расчет коэффициента корреляции между временными рядами с помощью отклонения от основной тенденции. Построение поля корреляции, формулировка гипотезы о форме связи. Оценка с помощью критерия Фишера. Интерпретация коэффициентов регрессии, оценка значимости.

    контрольная работа, добавлен 21.09.2017

  • Построение модели для зависимой переменной, используя пошаговую множественную регрессию (метод исключения, метод включения). Анализ накладных расходов за счёт значимых факторов, расчет индекса корреляции и оценка качества полученного уравнения регрессии.

    лабораторная работа, добавлен 27.11.2009

  • Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.

    лабораторная работа, добавлен 06.02.2015

  • Выбор факторов, влияющих на производительность труда. Рассмотрение линейной зависимости. Использование критериев Фишера и Стьюдента. Расчет коэффициентов регрессии и стандартных отклонений. Проверка адекватности модели. Проверка теоретического уравнения.

    контрольная работа, добавлен 13.05.2009

  • Определение и матричное представление линейной регрессии. Этапы проверки качества регрессионных моделей. Характеристика коэффициента детерминации, его основные свойства и расчётная формула. Определение скорректированного коэффициента детерминации.

    курсовая работа, добавлен 14.12.2012

  • Составление уравнения регрессии с применением метода наименьших квадратов. Оценка достоверности полученного уравнения с использованием корреляционного анализа. Расчет среднеквадратичного отклонения, коэффициентов парной детерминации и корреляции.

    задача, добавлен 19.04.2017

  • Параметры уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Прогнозирование среднего значения показателя. Графически фактические и модельные значения Y точки прогноза. График остаточной компоненты. Дисперсия остатков.

    задача, добавлен 05.12.2014

  • Оценка коэффициента линейной регрессии по методу наименьших квадратов. Модель кейнсианского типа. Определение эмпирических коэффициентов регрессии и корреляции в случае линейной модели регрессии. Решение системы нормальных уравнений по формулам Крамера.

    контрольная работа, добавлен 19.10.2013

  • Нахождение закона распределения переменной и построение гистограммы. Выбор наиболее типичного значения переменной, средний разброс ее значений. Расчет коэффициента корреляции. Оценка линейного уравнения регрессии. Проверка качества построенной модели.

    курсовая работа, добавлен 11.06.2012

  • Одномерные случайные величины. Вычисление среднего и дисперсии, проверка на наличие грубых погрешностей. Определение доверительного интервала для сигмы. Двумерные случайные величины. Выбор двух функций и построение корреляционного поля. Линии регрессии.

    курсовая работа, добавлен 08.05.2012

  • Основные задачи и предпосылки корреляционного анализа. Использование способов парной корреляции для изучения стохастических зависимостей. Возникновение множественной корреляции от взаимодействия нескольких факторов с результативным показателем.

    доклад, добавлен 12.02.2011

  • Модель парной линейной регрессии. Оценивание параметров функции парной линейной регрессии. Связь оценок параметров функции парной линейной регрессии с выборочными числовыми характеристиками. Коэффициент детерминации и корреляции. Корреляционное поле.

    курсовая работа, добавлен 21.08.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.