Вероятность наступления события
Полная группа равновероятных и несовместных событий. Условные вероятности события. Интегральная теорема Лапласа. Сущность закона распределения дискретной случайной величины. Выборочное уравнение прямой регрессии. Гистограмма относительных частот.
Подобные документы
Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014Закон распределения дискретной случайной величины. Построение графика функции распределения. Расчет математического ожидания, дисперсии и среднего квадратического отклонения случайной величины. Изображение графически эмпирической функции распределения.
задача, добавлен 03.07.2012Особенности определения математического ожидания, дисперсии и среднего квадратического отклонения случайной величины. Рассмотрение локальной теоремы Лапласа. Методика определение вероятности события. Основы построения гистограммы и полигона частот.
задача, добавлен 09.01.2014Расчет вероятности события. Понятие элементарных событий, их несовместимость. Использование правила умножения. Поиск вероятности выхода прибора из строя. Теорема о произведении и сложении вероятностей для независимых событий. Расчет количества событий.
контрольная работа, добавлен 05.11.2016Рассмотрение примеров расчета вероятности заданного события. Определение вероятности попадания в мишень, выбора обуви первого и второго сорта, вычисление последней цифры телефона. Изучение закона распределения случайных величин рядом распределения.
контрольная работа, добавлен 07.01.2014Определение вероятности случайного события. Вероятность использования кредита не по назначению среди выборки заемщиков. Закон распределения числа бракованных деталей. Графическое решение распределения случайной величины. Группировка статистического ряда.
контрольная работа, добавлен 19.01.2015События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.
контрольная работа, добавлен 14.12.2015Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.
реферат, добавлен 18.10.2016Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Нахождение вероятности случайного события. Формула Пуассона. Функция и график распределения случайной величины. Классическая формула вероятности и формула числа сочетаний. Расчет дисперсии и математического ожидания по плотности вероятности величины.
контрольная работа, добавлен 14.05.2012Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.
контрольная работа, добавлен 20.01.2013Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.
задача, добавлен 16.10.2017Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009Определение и обоснование вероятности состава делегации из двух женщин и одного мужчины. Математическое ожидание и дисперсия дискретной случайной величины, заданной рядом распределения. Исследование и анализ плотности вероятности случайной величины.
контрольная работа, добавлен 20.05.2015Определение вероятности случайного события, классической вероятности, статистической. Частота случайного события. Сумма и произведение двух событий. Функции распределения и плотности, начальные и центральные моменты. Мода, медиана, асимметрия и эксцесс.
контрольная работа, добавлен 12.04.2014Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.
дипломная работа, добавлен 27.09.2012Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.
учебное пособие, добавлен 24.11.2014Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.
презентация, добавлен 08.12.2014Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.
презентация, добавлен 01.11.2013Определение вероятности того, что будут сданы два первых экзамена. Вычисление значения функции распределения. Построение многоугольника распределения. Нахождение математического ожидания, дисперсии и среднего квадратического отклонения случайной величины.
контрольная работа, добавлен 26.05.2015Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.
контрольная работа, добавлен 23.01.2014Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.
курсовая работа, добавлен 19.10.2014